A Dynamic Sliding Window Approach for Activity Recognition

  • Javier Ortiz Laguna
  • Angel García Olaya
  • Daniel Borrajo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6787)


Human activity recognition aims to infer the actions of one or more persons from a set of observations captured by sensors. Usually, this is performed by following a fixed length sliding window approach for the features extraction where two parameters have to be fixed: the size of the window and the shift. In this paper we propose a different approach using dynamic windows based on events. Our approach adjusts dynamically the window size and the shift at every step. Using our approach we have generated a model to compare both approaches. Experiments with public datasets show that our method, employing simpler models, is able to accurately recognize the activities, using fewer instances, and obtains better results than the approaches used by the datasets authors.


Human Activity Recognition Sliding Window Sensor Networks Wearable Systems Ubiquitous Computing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bao, L., Intille, S.: Activity recognition from user-annotated acceleration data. In: Ferscha, A., Mattern, F. (eds.) PERVASIVE 2004. LNCS, vol. 3001, pp. 1–17. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Chawla, N.: Data mining for imbalanced datasets: An overview. In: Data Mining and Knowledge Discovery Handbook, pp. 875–886 (2010)Google Scholar
  3. 3.
    Frank, E., Witten, I.: Generating accurate rule sets without global optimization. In: Proceedings of the Fifteenth International Conference on Machine Learning, pp. 144–151. Citeseer (1998)Google Scholar
  4. 4.
    Gu, T., Wu, Z., Tao, X., Pung, H., Lu, J.: epSICAR: An Emerging Patterns based approach to sequential, interleaved and Concurrent Activity Recognition. In: Proceedings of the 2009 IEEE International Conference on Pervasive Computing and Communications, pp. 1–9. IEEE Computer Society, Los Alamitos (2009)CrossRefGoogle Scholar
  5. 5.
    Hall, M., Smith, L.: Practical feature subset selection for machine learning. Computer Science 98, 4–6 (1998)Google Scholar
  6. 6.
    Huynh, T., Schiele, B.: Analyzing features for activity recognition. In: Proceedings of the 2005 Joint Conference on Smart Objects and Ambient Intelligence: Innovative Context-Aware Services: Usages and Technologies, p. 163. ACM, New York (2005)Google Scholar
  7. 7.
    Junker, H., Amft, O., Lukowicz, P., Tröster, G.: Gesture spotting with body-worn inertial sensors to detect user activities. Pattern Recognition 41(6), 2010–2024 (2008)CrossRefzbMATHGoogle Scholar
  8. 8.
    Kasteren, T., Athanasios, N., Englebienne, G., Kröse, B.: Accurate activity recognition in a home setting. In: UbiComp 2008: Proceedings of the 10th International Conference on Ubiquitous Computing, pp. 1–9. ACM, New York (2008)Google Scholar
  9. 9.
    Logan, B., Healey, J., Philipose, M., Tapia, E., Intille, S.: A long-term evaluation of sensing modalities for activity recognition. In: Krumm, J., Abowd, G.D., Seneviratne, A., Strang, T. (eds.) UbiComp 2007. LNCS, vol. 4717, pp. 483–500. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Modayil, J., Bai, T., Kautz, H.: Improving the recognition of interleaved activities. In: Proceedings of the 10th International Conference on Ubiquitous Computing, pp. 40–43. ACM, New York (2008)Google Scholar
  11. 11.
    Ortiz, J., García, A., Borrajo, D.: A Relational Learning Approach to Activity Recognition from Sensor Readings. In: 4th International IEEE Conference Intelligent Systems, IS 2008, vol. 3 (2008)Google Scholar
  12. 12.
    Patterson, D., Fox, D., Kautz, H., Philipose, M.: Fine-grained activity recognition by aggregating abstract object usage. In: Ninth IEEE International Symposium on Wearable Computers, pp. 44–51 (2005)Google Scholar
  13. 13.
    Quinlan, J.: C4.5: programs for machine learning. Morgan Kaufmann, San Francisco (2003)Google Scholar
  14. 14.
    Stikic, M., Huynh, T., Van Laerhoven, K., Schiele, B.: ADL recognition based on the combination of RFID and accelerometer sensing. In: 2nd International Conference on Pervasive Computing Technologies for Healthcare (2008)Google Scholar
  15. 15.
    Tapia, E., Intille, S., Larson, K.: Activity Recognition in the Home Setting Using Simple and Ubiquitous Sensors. LNCS, pp. 158–175 (2004)Google Scholar
  16. 16.
    Van Kasteren, T., Englebienne, G., Kröse, B.: Towards a Consistent Methodology for Evaluating Activity Recognition Model PerformanceGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Javier Ortiz Laguna
    • 1
  • Angel García Olaya
    • 1
  • Daniel Borrajo
    • 1
  1. 1.Departamento de InformáticaUniversidad Carlos III de MadridLeganés, MadridSpain

Personalised recommendations