Alternating-Time Temporal Announcement Logic

  • Tiago de Lima
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6814)


We propose a formalism that we call Alternating-time Temporal Announcement Logic (ATAL). It can be seen as an extension of the Coalition Announcement Logic (CAL) proposed by Ågotnes et al. As well as CAL, ATAL has modal operators enabling to express sentences like ‘there is an action α by group of agents G after which consequence φ is true, in spite of what the other agents do’. One of the differences here, is that such action α can also be a physical action, and not only public announcements, as in CAL. Based on the latter kind of operator, ATAL also presents operators similar to those in Alternating-time Temporal Logic, which enable to express agents abilities. For instance, ATAL has operators enabling to express sentences like ‘the group of agents G is able to enforce that φ is true from the next step on until ψ becomes true’. We also provide a sound and complete axiomatization for ATAL and draw comparisons with several other logics, such as Public Announcement Logic with Assignment, Arbitrary Public Announcement Logic, Coalition Logic and Alternating-time Temporal Logic.


Logics for coalitional ability Epistemic Logic Dynamic Epistemic Logic Coalition Logic Alternating-time Temporal Logic 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ågotnes, T., Balbiani, P., van Ditmarsch, H., Seban, P.: Group announcement logic. Journal of Applied Logic 8(1), 62–81 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Ågotnes, T., van Ditmarsch, H.: Coalitions and announcements. In: Padgham, et al. (eds.) Proc. of the AAMAS 2008. IFAAMAS, pp. 673–680 (2008)Google Scholar
  3. 3.
    Alur, R., Henzinger, T., Kupferman, O.: Alternating-time temporal logic. Journal of the ACM 5(49), 672–713 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Baltag, A., Moss, L.: Logics for epistemic programs. Synthese 139, 165–224 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Belnap, N.D., Perloff, M., Xu, M.: Facing the future: agents and choices in our indeterminist world. Oxford University Press, Oxford (2001)Google Scholar
  6. 6.
    Borgo, S.: Coalitions in action logic. In: Veloso, M. (ed.) Proc. of IJCAI 2007, pp. 1822–1827 (2007)Google Scholar
  7. 7.
    Broersen, J.: A complete STIT logic for knowledge and action, and some of its applications. In: Baldoni, M., Son, T.C., van Riemsdijk, M.B., Winikoff, M. (eds.) DALT 2008. LNCS (LNAI), vol. 5397, pp. 47–59. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Demolombe, R., Herzig, A., Varzinczak, I.: Regression in modal logic. Journal of Applied Non-classical Logics 13(2), 165–168 (2003)CrossRefzbMATHGoogle Scholar
  9. 9.
    van Ditmarsch, H., Herzig, A., de Lima, T.: Optimal regression for reasoning about knowledge and actions. In: Proc. of AAAI, pp. 1070–1075. AAAI Press, Menlo Park (2007)Google Scholar
  10. 10.
    van Ditmasch, H., van der Hoek, W., Kooi, B.: Dynamic epistemic logic with assignment. In: Dignum, F., et al. (eds.) Proc. of AAMAS 2005, pp. 141–148 (2005)Google Scholar
  11. 11.
    Fagin, R., Halpern, J., Vardi, Y.M.M.: Reasoning about Knowledge. MIT Press, Cambridge (1995)zbMATHGoogle Scholar
  12. 12.
    French, T., van Ditmarsch, H.: Undecidability for arbitrary public announcement logic. In: Areces, C., Goldblatt, R. (eds.) Proc. of AiML 2008, pp. 23–42. College Publications, London (2008)Google Scholar
  13. 13.
    Goranko, V., van Drimmelen, G.: Complete axiomatization and decidability of alternating-time temporal logic. Theoretical Computer Science 353, 93–117 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Halpern, J.Y., Moses, Y.: A guide to completeness and complexity for modal logics of knowledge and belief. Artificial Intelligence 54, 311–379 (1992)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press, Cambridge (2000)zbMATHGoogle Scholar
  16. 16.
    Herzig, A., Lorini, E.: A dynamic logic of agency I: STIT, abilities and powers. Journal of Logic, Language and Information 19, 89–121 (2009)CrossRefzbMATHGoogle Scholar
  17. 17.
    van der Hoek, W., Wooldridge, M.: Cooperation, knowledge, and time: Alternating-time temporal epistemic logic and its applications. Studia Logica 75, 125–157 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Lakemeyer, G., Levesque, H.: Semantics for a useful fragment of the situation calculus. In: Proc. of IJCAI 2005, pp. 490–496. Professional Book Center (2005)Google Scholar
  19. 19.
    de Lima, T., Royakkers, L., Dignum, F.: A logic for reasoning about responsibility. Logic Journal of the IGPL 18(1), 99–117 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Pauly, M.: A modal logic for coalitional power in games. Journal of Logic and Computation 12(1), 149–166 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Plaza, J.: Logics of public communication. In: Proc. of ISMIS 1989 (1989)Google Scholar
  22. 22.
    Reiter, R.: The frame problem in the situation calculus: A simple solution (sometimes) and a completeness result for goal regression. In: Lifschitz, V. (ed.) Artificial Intelligence and Mathematical Theory of Computation: Papers in Honor of John McCarthy, pp. 359–380. Academic Press, New york (1991)CrossRefGoogle Scholar
  23. 23.
    Walther, D., van der Hoek, W., Wooldridge, M.: Alternating-time temporal logic with explicit strategies. In: Samet, D. (ed.) Proc. of TARK XI, pp. 269–278. Presses Universitaires de Louvain (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Tiago de Lima
    • 1
  1. 1.CRILUniversity of Artois and CNRSLens CedexFrance

Personalised recommendations