Advertisement

Probabilistic Rule Learning in Nonmonotonic Domains

  • Domenico Corapi
  • Daniel Sykes
  • Katsumi Inoue
  • Alessandra Russo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6814)

Abstract

We propose here a novel approach to rule learning in probabilistic nonmonotonic domains in the context of answer set programming. We used the approach to update the knowledge base of an agent based on observations. To handle the probabilistic nature of our observation data, we employ parameter estimation to find the probabilities associated with each of these atoms and consequently with rules. The outcome is the set of rules which have the greatest probability of entailing the observations. This ultimately improves tolerance of noisy data compared to traditional inductive logic programming techniques. We illustrate the benefits of the approach by applying it to a planning problem in which the involved agent requires both nonmonotonicity and tolerance of noisy input.

Keywords

Inductive Logic Programming Probabilistic Logic Programming Answer Set Programming Hypothetical Reasoning Planning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alrajeh, D., Ray, O., Russo, A., Uchitel, S.: Extracting Requirements from Scenarios with ILP. In: Muggleton, S.H., Otero, R., Tamaddoni-Nezhad, A. (eds.) ILP 2006. LNCS (LNAI), vol. 4455, pp. 64–78. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Boutilier, C., Brafman, R.I., Geib, C.: Prioritized goal decomposition of markov decision processes: Toward a synthesis of classical and decision theoretic planning. In: Proceedings of the Fifteenth International Joint Conference on Artificial Intelligence, pp. 1156–1162 (1997)Google Scholar
  3. 3.
    Clark, K.L.: Negation as failure. Logic and Data Bases, 293–322 (1977)Google Scholar
  4. 4.
    Corapi, D., Russo, A., Lupu, E.: Inductive logic programming as abductive search. In: Tec. Comm. of the 26th ICLP, LIPIcs, vol. 7, pp. 54–63, Dagstuhl (2010)Google Scholar
  5. 5.
    Dantsin, E.: Probabilistic logic programs and their semantics. In: Voronkov, A. (ed.) RCLP 1990 and RCLP 1991. LNCS, vol. 592, pp. 152–164. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  6. 6.
    De Raedt, L., Thomas, G., Getoor, L., Kersting, K., Muggleton, S. (eds.): Probabilistic, Logical and Relational Learning. Schloss Dagstuhl (2008)Google Scholar
  7. 7.
    De Raedt, L., Thon, I.: Probabilistic Rule Learning. In: Frasconi, P., Lisi, F.A. (eds.) ILP 2010. LNCS (LNAI), vol. 6489, pp. 47–58. Springer, Heidelberg (2011)Google Scholar
  8. 8.
    Getoor, L., Taskar, B.: Introduction to Statistical Relational Learning (Adaptive Computation and Machine Learning). The MIT Press, Cambridge (2007)zbMATHGoogle Scholar
  9. 9.
    Giunchiglia, F., Traverso, P.: Planning as model checking. In: Biundo, S., Fox, M. (eds.) ECP 1999. LNCS, vol. 1809, pp. 1–20. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  10. 10.
    Gutmann, B., Kimmig, A., Kersting, K., De Raedt, L.: Parameter learning in probabilistic databases: A least squares approach. In: Daelemans, W., Goethals, B., Morik, K. (eds.) ECML PKDD 2008, Part I. LNCS (LNAI), vol. 5211, pp. 473–488. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Inoue, K., Sato, T., Ishihata, M., Kameya, Y., Nabeshima, H.: Evaluating abductive hypotheses using an em algorithm on bdds. In: Boutilier, C. (ed.) IJCAI, pp. 810–815 (2009)Google Scholar
  12. 12.
    Inoue, K., Sakama, C.: Transforming abductive logic programs to disjunctive programs. In: Proc. 10th ICLP, pp. 335–353. MIT Press, Cambridge (1993)Google Scholar
  13. 13.
    Kimmig, A., Santos Costa, V., Rocha, R., Demoen, B., De Raedt, L.: On the efficient execution of probLog programs. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp. 175–189. Springer, Heidelberg (2008), http://dx.doi.org/10.1007/978-3-540-89982-2_22 CrossRefGoogle Scholar
  14. 14.
    Kok, S., Domingos, P.: Learning the structure of markov logic networks. In: Proceedings of the 22nd International Conference on Machine Learning, pp. 441–448. ACM Press, New York (2005)Google Scholar
  15. 15.
    Kowalski, R., Sergot, M.: A logic-based calculus of events. New Gen. Comput. 4(1), 67–95 (1986)CrossRefGoogle Scholar
  16. 16.
    Lavrac, N., Dzeroski, S.: Inductive logic programming - techniques and applications. Ellis Horwood series in artificial intelligence. Ellis Horwood (1994)Google Scholar
  17. 17.
    Lifschitz, V.: Answer set programming and plan generation. Artificial Intelligence  138(1-2) (2002); Knowledge Representation and Logic ProgrammingGoogle Scholar
  18. 18.
    Lloyd, J.W.: Foundations of Logic Programming, 2nd edn. Springer, Heidelberg (1987)CrossRefzbMATHGoogle Scholar
  19. 19.
    Mitchell, T.M.: Machine Learning. McGraw-Hill, New York (1997)zbMATHGoogle Scholar
  20. 20.
    Muggleton, S.: Inverse entailment and progol. New Gen. Comp. 13(3&4), 245–286 (1995)CrossRefGoogle Scholar
  21. 21.
    Muggleton, S.: Learning structure and parameters of stochastic logic programs. In: Matwin, S., Sammut, C. (eds.) ILP 2002. LNCS (LNAI), vol. 2583, pp. 198–206. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  22. 22.
    Muggleton, S.: Learning stochastic logic programs. Electron. Trans. Artif. Intell. 4(B), 141–153 (2000)MathSciNetGoogle Scholar
  23. 23.
    Poole, D.: Abducing through negation as failure: stable models within the independent choice logic. The Journal of Logic Programming 44(1-3), 5–35 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Ray, O.: Nonmonotonic abductive inductive learning. Journal of Applied Logic 7(3), 329–340 (2009), http://www.cs.bris.ac.uk/Publications/Papers/2001069.pdf MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Richardson, M., Domingos, P.: Markov logic networks. Machine Learning 62(1-2), 107–136 (2006)CrossRefGoogle Scholar
  26. 26.
    Sakama, C.: Nonmonotonic inductive logic programming. In: Eiter, T., Faber, W., Truszczyński, M. (eds.) LPNMR 2001. LNCS (LNAI), vol. 2173, p. 62. Springer, Heidelberg (2001)Google Scholar
  27. 27.
    Sato, T.: A statistical learning method for logic programs with distribution semantics. In: ICLP, pp. 715–729 (1995)Google Scholar
  28. 28.
    Schoppers, M.: Universal plans for reactive robots in unpredictable environments. In: IJCAI, vol. 87, pp. 1039–1046 (1987)Google Scholar
  29. 29.
    Shanahan, M.: An abductive event calculus planner. The Journal of Logic Programming 44(1-3), 207–240 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Singla, P., Domingos, P.: Discriminative training of markov logic networks. In: Veloso, M.M., Kambhampati, S. (eds.) AAAI. pp. 868–873. AAAI Press / The MIT Press (2005)Google Scholar
  31. 31.
    Zettlemoyer, L.S., Pasula, H., Kaelbling, L.P.: Learning planning rules in noisy stochastic worlds. In: AAAI, pp. 911–918 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Domenico Corapi
    • 1
  • Daniel Sykes
    • 1
  • Katsumi Inoue
    • 2
  • Alessandra Russo
    • 1
  1. 1.Department of ComputingImperial College LondonLondonUK
  2. 2.National Institute of InformaticsTokyoJapan

Personalised recommendations