Reasoning about Exceptions to Contracts

  • Özgür Kafalı
  • Francesca Toni
  • Paolo Torroni
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6814)


We show an application of Assumption-Based Argumentation for reasoning about and handling exceptions in multiagent contracts. We show that this solution enjoys interesting properties regarding the ABA semantics of results obtained and the determinism of diagnostic answers. As a case study, we present the workings of the framework on a delivery process from e-commerce.


Multiagent System Action Rule Social Commitment Diagnosis Process Prefer Extension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bondarenko, A., Dung, P., Kowalski, R., Toni, F.: An abstract, argumentation-theoretic approach to default reasoning. Artificial Intelligence 93(1-2), 63–101 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bylander, T., Allemang, D., Tanner, M.C., Josephson, J.R.: The computational complexity of abduction. Artificial Intelligence 49(1-3), 25–60 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Console, L., Dressler, O.: Model-based diagnosis in the real world: Lessons learned and challenges remaining. In: IJCAI 1999: 16th International Joint Conference on Artificial Intelligence, pp. 1393–1400 (1999)Google Scholar
  4. 4.
    Console, L., Dupré, D.T., Torasso, P.: Towards the integration of different knowledge sources in model-based diagnosis. In: Ardizzone, E., Sorbello, F., Gaglio, S. (eds.) AI*IA 1991. LNCS, vol. 549, pp. 177–186. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  5. 5.
    Dellarocas, C., Klein, M., Rodríguez-Aguilar, J.A.: An exception-handling architecture for open electronic marketplaces of contract net software agents. In: ACM Conference on Electronic Commerce, pp. 225–232 (2000)Google Scholar
  6. 6.
    Dung, P., Kowalski, R., Toni, F.: Dialectic proof procedures for assumption-based, admissible argumentation. Artificial Intelligence 170(2), 114–159 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Dung, P., Kowalski, R., Toni, F.: Assumption-based argumentation. In: Rahwan, I., Simari, G. (eds.) Argumentation in AI, pp. 199–218. Springer, Heidelberg (2009)Google Scholar
  8. 8.
    Dung, P., Mancarella, P., Toni, F.: Computing ideal sceptical argumentation. Artificial Intelligence 171(10-15), 642–674 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Gaertner, D., Toni, F.: Computing arguments and attacks in assumption-based argumentation. IEEE Intelligent Systems 22(6), 24–33 (2007)CrossRefGoogle Scholar
  10. 10.
    Horling, B., Benyo, B., Lesser, V.R.: Using self-diagnosis to adapt organizational structures. In: Agents 2001: 5th International Conference on Autonomous Agents, pp. 529–536 (2001)Google Scholar
  11. 11.
    Kafalı, Ö., Chesani, F., Torroni, P.: What happened to my commitment? Exception diagnosis among misalignment and misbehavior. In: Dix, J., Leite, J., Governatori, G., Jamroga, W. (eds.) CLIMA XI. LNCS, vol. 6245, pp. 82–98. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Kafalı, Ö., Toni, F., Torroni, P.: Collaborative diagnosis of exceptions to contracts (extended abstract). In: AAMAS 2011: 10th International Conference on Autonomous Agents and Multiagent Systems. IFAAMAS, pp. 1167–1168 (2011)Google Scholar
  13. 13.
    Kafalı, Ö., Yolum, P.: Detecting exceptions in commitment protocols: Discovering hidden states. In: Dastani, M., El Fallah Segrouchni, A., Leite, J., Torroni, P. (eds.) LADS 2009. LNCS, vol. 6039, pp. 112–127. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    Kakas, A.C., Mancarella, P., Sadri, F., Stathis, K., Toni, F.: Computational logic foundations of KGP agents. Journal of Artificial Intelligence Research 33, 285–348 (2008)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Kalech, M., Kaminka, G.A.: On the design of social diagnosis algorithms for multi-agent teams. In: IJCAI 2003: 18th International Joint Conference on Artificial Intelligence, pp. 370–375 (2003)Google Scholar
  16. 16.
    Kalech, M., Kaminka, G.A.: Towards model-based diagnosis of coordination failures. In: AAAI 2005: 20th National Conference on Artificial intelligence, pp. 102–107 (2005)Google Scholar
  17. 17.
    Kaminka, G.A., Tambe, M.: Robust agent teams via socially-attentive monitoring. Journal of Artificial Intelligence Research 12, 105–147 (2000)zbMATHGoogle Scholar
  18. 18.
    Klein, M., Dellarocas, C.: A systematic repository of knowledge about handling exceptions in business processes. Tech. Rep. ASES-WP-2000-03. Massachusetts Institute of Technology, Cambridge, MA, USA (2000)Google Scholar
  19. 19.
    Lamperti, G., Zanella, M.: Eden: An intelligent software environment for diagnosis of discrete-event systems. In: Applied Intelligence, pp. 55–77 (2003)Google Scholar
  20. 20.
    Lucas, P.J.F.: Analysis of notions of diagnosis. Artificial Intelligence 105(1-2), 295–343 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Micalizio, R., Torasso, P., Torta, G.: On-line monitoring and diagnosis of a team of service robots: A model-based approach. AI Communications 19, 313–340 (2006)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Pencole, Y., Cordier, M.O., Roze, L.: Incremental decentralized diagnosis approach for the supervision of a telecommunication network. In: IEEE Conference on Decision and Control, pp. 435–440 (2002)Google Scholar
  23. 23.
    Picardi, C., Bray, R., Cascio, F., Console, L., Dague, P., Millet, D., Rehfus, B., Struss, P., Vallée, C.: Idd: Integrating diagnosis in the design of automotive systems. In: ECAI 2002: 15th European Conference on Artificial Intelligence, pp. 628–632. IOS Press, Amsterdam (2002)Google Scholar
  24. 24.
    Rahwan, I., Ramchurn, S.D., Jennings, N.R., Mcburney, P., Parsons, S., Sonenberg, L.: Argumentation-based negotiation. Knowledge Engineering Review 18, 343–375 (2003)CrossRefGoogle Scholar
  25. 25.
    Roos, N., Witteveen, C.: Models and methods for plan diagnosis. Autonomous Agents and Multi-Agent Systems 19, 30–52 (2009)CrossRefGoogle Scholar
  26. 26.
    Singh, M.P.: Agent communication languages: Rethinking the principles. IEEE Computer 31, 40–47 (1998)CrossRefGoogle Scholar
  27. 27.
    Singh, M.P.: An ontology for commitments in multiagent systems: Toward a unification of normative concepts. Artificial Intelligence and Law 7, 97–113 (1999)CrossRefGoogle Scholar
  28. 28.
    Torroni, P., Chesani, F., Mello, P., Montali, M.: Social commitments in time: Satisfied or compensated. In: Baldoni, M., Bentahar, J., van Riemsdijk, M.B., Lloyd, J. (eds.) DALT 2009. LNCS, vol. 5948, pp. 228–243. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  29. 29.
    Walton, D.N., Krabbe, E.C.W.: Commitment in Dialogue: Basic Concepts of Interpersonal Reasoning. State University of New York Press, Albany (1995)Google Scholar
  30. 30.
    Witteveen, C., Roos, N., van der Krogt, R., de Weerdt, M.: Diagnosis of single and multi-agent plans. In: AAMAS 2005: 4th International Joint Conference on Autonomous Agents, pp. 805–812. ACM, New York (2005)Google Scholar
  31. 31.
    Yolum, P., Singh, M.P.: Flexible protocol specification and execution: applying event calculus planning using commitments. In: AAMAS 2002: 1st International Joint Conference on Autonomous Agents and Multiagent Systems, pp. 527–534. ACM, New York (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Özgür Kafalı
    • 1
  • Francesca Toni
    • 2
  • Paolo Torroni
    • 3
  1. 1.Department of Computer EngineeringBoğaziçi UniversityBebekTurkey
  2. 2.Department of ComputingImperial College LondonLondonUK
  3. 3.DEISUniversity of BolognaBolognaItaly

Personalised recommendations