Biosicherheit und Synthetische Biologie

  • Markus Schmidt
Part of the acatech DISKUSSION book series (ACATECHDISK)


Die Synthetische Biologie ist eine hochdynamische neue Disziplin, die sich in den Natur-und Ingenieurwissenschaften rasch entfaltet. Die Auswirkungen der Synthetischen Biologie beschränken sich nicht allein auf die Forschung und die Arbeitswelt in den Labors, denn sie könnte künftig in vielen gesellschaftlichen Bereichen relevant werden. Forscher aus der Synthetischen Biologie können unter anderem künstliche Moleküle nutzen, um emergente Phänomene aus der Natur nachzuahmen. Ihr Ziel ist es, künstliches Leben zu erschaffen oder biologischen Bausteine zu entwickeln, die sich so zusammensetzen lassen, dass komplexe Systeme entstehen - und zwar mit völlig neuartigen Funktionen, wie sie in der Natur nicht vorkommen.1


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturv erzeichnis

  1. Anderson et al. 2004
    Anderson, J. C. et al.: An expanded genetic code with a functional quadruplet codon. In: Proceedings of the National Academy of Sciences of the United States (2004), Nr. 101, S. 7566–7571.CrossRefGoogle Scholar
  2. Anonymous 2003.
    Anonymous: Hacking the Genome. In: 2600 The Hacker Quarterly (2003), Nr. 20, S. 6–9.Google Scholar
  3. Bedau et al. 2009
    Bedau, M. A. et al.: Social and ethical checkpoints for bottom-up synthetic biology, or protocells. In: Systems and Synthetic Biology (2009), Vol. 3, Nr. 1–4, S. 65–75.PubMedCrossRefGoogle Scholar
  4. Benner/Sismour 2005.
    Benner, S. A./Sismour, A. M.: Synthetic biology. In: Nat Rev Genet (2005), Nr. 6, S. 533–443.PubMedCrossRefGoogle Scholar
  5. Bennett et al. 2009
    Bennett et al.: From synthetic biology to biohacking: are we prepared? In: Nat Biotech (2009), Vol. 27, Nr. 12, S. 1109–1111.CrossRefGoogle Scholar
  6. Bernauer et al. 2008
    Bernauer, H. et al.: Technical solutions for biosecurity in synthetic biology. IASB Industry Association Synthetic Biology (2008). URL: synthetic-biology/assets/File/pdf/iasb_report_biosecurity_syntheticbiology.pdf [Stand: 07.06.2010].Google Scholar
  7. Budisa 2004.
    Budisa, N.: Prolegomena to future efforts on genetic code engineering by expanding its amino acid repertoire. In: Angew Chem Int. (2004), Nr. 43, S. 3387–3428.Google Scholar
  8. Bügl et al. 2007
    Bügl, H. et al.: DNA synthesis and biological security. In: Nature Biotechnology (2007), Nr. 25, S. 627–629.PubMedCrossRefGoogle Scholar
  9. Buller 2003.
    Buller, M.: The potential use of genetic engineering to enhance orthopoxviruses as bioweapons. International Conference Smallpox Biosecurity: Preventing the Unthinkable, Genf, Schweiz 2003.Google Scholar
  10. Carr/Church 2009.
    Carr, P./Church, C.: Genome engineering. In: Nat Biotech Volume 27 (2009), Nr. 12, S. 1151–1162.CrossRefGoogle Scholar
  11. Cello et al. 2002
    Cello, J. et al.: Chemical synthesis of poliovirus cDNA: generation of infectious virus in the absence of natural template. In: Science (2002), Nr. 297, S. 1016–1018.PubMedCrossRefGoogle Scholar
  12. Chin 2006.
    Chin, J. W.: Modular approaches to expanding the functions of living matter. In: Nat Chem Biol (2006), Nr. 2, S. 304–311.PubMedCrossRefGoogle Scholar
  13. Church 2004.
    Church, G: A Synthetic Biohazard Nonproliferation Proposal (2004). URL: http://arep. [Stand: 07.06.2010].Google Scholar
  14. Church 2005.
    Church, G. M.: A synthetic biohazard non-proliferation proposal (2005). URL: http:// [Stand: 07.06.2010].Google Scholar
  15. de Vriend 2006.
    de Vriend, H.: Constructing Life: Early social reflections on the emerging field of SB, The Hague: Rathenau Instituut, 2006.Google Scholar
  16. Endy 2005.
    Endy, D.: Foundations for engineering biology. In: Nature (2005), Nr. 438, S. 449–453.PubMedCrossRefGoogle Scholar
  17. FAO 2002.
    FAO: Report of the Expert Consultation on Biosecurity in Food and Agriculture, Rome: FAO, 2002.Google Scholar
  18. Fink et al. 2004
    Fink et al.: Biotechnology Research In An Age Of Terrorism: Confronting The Dual Use Dilemma, Washington D.C.: The National Academies Press, 2004.Google Scholar
  19. Fleming 2007.
    Fleming, D. O.: Risk Assessment of Synthetic Genomics: A Biosafety and Biosecurity Perspective. In: Working Papers for Synthetic Genomics: Risks and Benefits for Science and Society (2007), S. 105–164.Google Scholar
  20. Garfinkel et al. 2007
    Garfinkel, M./Endy, D./Epstein, G. L./Friedman, R.: Synthetic Genomics: Options for Governance, CSIS-MIT-Venter report 2007. URL: syngen-options/overview/ [Stand 23.05.2011].Google Scholar
  21. Glass et al. 2006
    Glass, J. I. et al.: Essential genes of a minimal bacterium. In: Proceedings of the National Academy of Sciences of the United States (2006), Nr. 103, S. 425–430.CrossRefGoogle Scholar
  22. Graham et al. 2008
    Graham et al.: World at Risk, New York: Random House, 2008.Google Scholar
  23. Heinemann/Panke 2006.
    Heinemann, M./Panke, S.: Synthetic biology-putting engineering into biology. In: Bioinformatics (2006), Nr. 22, S. 2790–2799.PubMedCrossRefGoogle Scholar
  24. Herdewijn/Marliere 2009.
    Herdewijn, P./Marliere, P.: Toward safe genetically modified organisms through the chemical diversification of nucleic acids. In: Chem Biodivers (2009), Nr. 6, S. 791–808.PubMedCrossRefGoogle Scholar
  25. IASB 2009.
    IASB: The IASB Code of Conduct for Best Practices in Gene Synthesis Cambridge (2009). URL: conduct_final.pdf [Stand: 07.06.2010].Google Scholar
  26. IGSC 2009.
    IGSC (International Gene Synthesis Consortium): Harmonized Screening Protocol: Gene Sequence & Customer Screening to Promote Biosecurity (2009). URL: http://www.genesynthesisconsortium. org/Harmonized_Screening_Protocol.html [Stand: 07.06.2010].Google Scholar
  27. Jackson et al. 2001
    Jackson, R. J. et al.: Expression of mouse interleukin-4 by a recombinant ectromelia virus suppresses cytolytic lymphocyte responses and overcomes genetic resistance to mousepox. IN: Journal of Virology (2001), Nr. 75, S. 1205–1210.PubMedCrossRefGoogle Scholar
  28. Keasling 2008.
    Keasling, J. D.: Synthetic Biology for Synthetic Chemistry. IN: ACS Chem Biol (2008), Nr. 3, S. 64–76.PubMedCrossRefGoogle Scholar
  29. Kelle 2007.
    Kelle, A.: Synthetic Biology and Biosecurity Awareness in Europe, Vienna: IDC, 2007. URL: Kelle.pdf [Stand: 07.06.2010].Google Scholar
  30. Leconte et al. 2007
    Leconte, A. M. et al.: Discovery, characterisation, and optimisation of an unnatural base pair for expansion of the genetic alphabet. In: J. Am. Chem. Soc. (2008), Nr. 130, S. 2336–2343.PubMedCrossRefGoogle Scholar
  31. Lemon-Relman Committee 2006.
    Lemon-Relman Committee: Globalization, Biosecurity and the Future of the Life Sciences, Report by the Committee on Advances in Technology and the Prevention of Their Application to Next Generation Biowarfare Threats, Washington D.C: The National Academies Press, 2006.Google Scholar
  32. Luisi 2007.
    Luisi, P. L.: Chemical Aspects of Synthetic Biology. In: Chemistry and Biodiversity (2007), Nr. 4, S. 603–621.PubMedCrossRefGoogle Scholar
  33. MacKenzie 2003.
    MacKenzie, D.: US develops lethal new viruses. In: New Scientist (2003), Nr. 180.Google Scholar
  34. Marliere 2009.
    Marliere, P.: The farther, the safer: a manifesto for securely navigating synthetic species away from the old living world. In: Syst Synth Biol (2009), Nr. 3, S. 77–84.PubMedCrossRefGoogle Scholar
  35. Neuman 2010.
    Neumann, H. et al.: Encoding multiple unnatural amino acids via evolution of a quadruplet-decoding ribosome. In: Nature (2010) Nr. 464, S. 441–444.PubMedCrossRefGoogle Scholar
  36. NIH 2009.
    NIH (US Department of Health and Human Services): Screening Framework Guidance for Synthetic Double-Stranded DNA Providers (2009). URL: http://edocket.access.gpo. gov/2009/pdf/E9-28328.pdf [Stand: 07.06.2010].Google Scholar
  37. Nowak 2001.
    Nowak, R.: Disaster in the making. An engineered mouse virus leaves us one step away from the ultimate bioweapon. IN: New Scientist 13. Januar 2001, S. 4–]ReferencesGoogle Scholar
  38. NSABB 2007.
    NSABB: Roundtable on Synthetic Biology, National Science Advisory Board for Biosecurity, Bethesda 2007. URL: 20Website.pdf [Stand: 07.06.2010].Google Scholar
  39. NSABB 2008.
    NSABB: Addressing biosecurity concerns related to the synthesis of selected agents (2008). URL: Genomics.pdf [Stand: 07.06.2010].Google Scholar
  40. O’Malley et al. 2008
    O’Malley, M. et al.: Knowledge-making distinctions in synthetic biology. IN: BioEssays (2008), Nr. 30, S. 57.CrossRefGoogle Scholar
  41. Qiang 2007.
    Qiang, W.: Efforts to Strengthen Biosafety and Biosecurity in China (chapter 6). In: Smithson AE (ed.): Beijing on Biohazards: Chinese Experts on Bioweapons Nonproliferation Issues, James Martin Center for Nonproliferation Studies, Monterey Institute of International Studies, Monterey.Google Scholar
  42. Ro et al. 2006
    Ro, D. K. et al.: Production of the antimalarial drug precursor artemisinic acid in engineered yeast. In: Nature (2006), Nr. 440, S. 940–943.PubMedCrossRefGoogle Scholar
  43. Rosengard et al. 2002
    Rosengard, A. M. et al.: Variola virus immune evasion design: expression of a highly efficient inhibitor of human complement. In: Proceedings of the National Academy of Sciences USA (2002) Nr. 99, S. 8808–8813.Google Scholar
  44. Sarasin 2004.
    Sarasin P.: Anthrax. Bioterror als Phantasma. Frankfurt am Main: Suhrkamp Verlag, 2004.Google Scholar
  45. Schmidt 2006.
    Schmidt, M.: Public will fear biological accidents, not just attacks. In: Nature (2006), Nr. 441, S. 1048.PubMedCrossRefGoogle Scholar
  46. Schmidt 2008.
    Schmidt, M.: Diffusion of synthetic biology: a challenge to biosafety. Systems and Synthetic Biology (2008). DOI: 10.1007/s11693-008-9018-z.Google Scholar
  47. Schmidt 2009.
    Schmidt, M.: Do I understand what I can create? Biosafety issues in synthetic biology. Kapitel 6 in: Schmidt, M. et al.: Synthetic Biology. The Technoscience and its Societal Consequences, Springer Academic Publishing, 2009.Google Scholar
  48. Schmidt et al. 2009
    Schmidt, M. et al.: A priority paper for the societal and ethical aspects of synthetic biology. In: Syst Synth Biol (2009), Nr. 3, S. 3–7.PubMedCrossRefGoogle Scholar
  49. Schmidt 2010.
    Schmidt M.: Xenobiology: A new form of life as the ultimate biosafety tool.In: BioEssays Vol. 32 (2010), Nr. 4, S. 322–331.PubMedCrossRefGoogle Scholar
  50. Serrano 2007.
    Serrano, L.: Synthetic biology: promises and challenges. In: Mol Syst Biol (2007), Nr. 3, S. 158.PubMedCrossRefGoogle Scholar
  51. Steinbrunner/Harris 2003.
    Steinbruner, J. D./Harris, E. D.: When science breeds nightmares. In: International Herald Tribune 3. Dezember 2003.Google Scholar
  52. Steinbrunner et al. 2007
    Steinbrunner, J./Harris, E. D./Gallagher, N./Okutani, S. M.: Controlling Dangerous Pathogens. A Prototype Protective Oversight System, 2007, College Park: University of Maryland. URL: pdf [Stand 23.05.2011].Google Scholar
  53. Tucker/Zilinskas 2006.
    Tucker, J. B./Zilinskas, R. A.: The Promise and Perils of Synthetic Biology. The New Atlantis (2006). URL: [Stand: 07.06.2010].Google Scholar
  54. WHO 2004.
    WHO (World Health Organization): Laboratory biosafety manual, 3. Aufl. Geneva: World Health Organization, 2004.Google Scholar
  55. Yang et al. 2006
    Yang, Z. et al.: Artificially expanded genetic information system: a new base pair with an alternative hydrogen bonding pattern. In: Nucleic Acids Res (2006), Nr. 34, S. 6095–6101.PubMedCrossRefGoogle Scholar
  56. Yang et al. 2007
    Yang, Z. et al.: Enzymatic incorporation of a third nucleobase pair. In: Nucleic Acids Res (2007), Nr. 35, S. 4238–4249.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Markus Schmidt

There are no affiliations available

Personalised recommendations