Advertisement

Applying Biometric Principles to Avatar Recognition

  • Marina L. Gavrilova
  • Roman Yampolskiy
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6670)

Abstract

Domestic and industrial robots, intelligent software agents, and virtual world avatars are quickly becoming a part of our society. Just like it is necessary to be able to accurately authenticate identity of human beings, it is becoming essential to be able to determine identities of the non-biological entities. This paper presents current state of the art in virtual reality security, focusing specifically on emerging methodologies for avatar authentication. It also makes a strong link between avatar recognition and current biometric research. Finally, future directions and potential applications for this high impact research field are discussed.

Keywords

biometric avatar recognition robot synthesis artimetrics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahn, L.v., Blum, M., Hopper, N., Langford, J.: CAPTCHA: Using Hard AI Problems for Security. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, Springer, Heidelberg (2003)Google Scholar
  2. 2.
    Asoh, H., Hayamizu, S., Hara, I., Motomura, Y., Akaho, S., Matsui, T.: Socially embedded learning of the office-conversant mobile robot jijo-2. In: 15th International Joint Conference on Artificial Intelligence, IJCAI (1997)Google Scholar
  3. 3.
    Baird, H.S., Bentley, J.L.: Implicit CAPTCHAs. In: Proceedings of the SPIE/IS&T Conference on Document Recognition and Retrieval XII (DR&R 2005), San Jose, CA (January 2005)Google Scholar
  4. 4.
    Bentley, J., Mallows, C.L.: CAPTCHA challenge strings: problems and improvements, Document Recognition & Retrieval, January 18-19 (2006)Google Scholar
  5. 5.
    Boyd, R.S.: Feds thinking outside the box to plug intelligence gaps, http://www.mcclatchydc.com/2010/03/29/91280/feds-thinking-outside-the-box.html (retrieved April 10, 2010)
  6. 6.
    Charles, J.S., Rosenberg, C., Thrun, S.: Spontaneous, Short-term Interaction with Mobile Robots. In: IEEE International Conference on Robotics and Automation, pp. 658–663 (1999)Google Scholar
  7. 7.
    Chen, K.-J., Barthes, J.-P.: Giving an Office Assistant Agent a Memory Mechanism. In: 7th IEEE International Conference on Cognitive Informatics (ICCI), Compiegne, pp. 402–410 (2008)Google Scholar
  8. 8.
    Cole, J.: Osama bin Laden’s Second Life, Salon (2008), http://www.salon.com/opinion/feature/2008/02/25/avatars/ (retrieved June 7, 2009)
  9. 9.
    Corney, M., Vel, O.d., Anderson, A., Mohay, G.: Gender-preferential text mining of e-mail discourse. In: 18th Annual Computer Security Applications Conference, Brisbane, Australia, pp. 282–289 (2002)Google Scholar
  10. 10.
    Craw, I., Tock, D., Bennett, A.: Finding Face Features. In: Second European Conference on Computer Vision, Santa Margherita Ligure, Italy, pp. 92–96 (1992)Google Scholar
  11. 11.
    Dai, Y., Nakano, Y.: Face-Texture Model Based on SGLD and Its Application in Face Detection in a Color Scene. Pattern Recognition 29(6), 1007–1017 (1996)CrossRefGoogle Scholar
  12. 12.
    Fisher, R.: Avatars can’t hide your lying eyes, New Scientist, vol. (2755) (April 8, 2010), www.newscientist.com/article/mg20627555.600-avatars-cant-hide-your-lying-eyes.html
  13. 13.
    Fong, T.W., Nourbakhsh, I., Dautenhahn, K.: A survey of socially interactive robots. Robotics and Autonomous Systems 42, 143–166 (2003)CrossRefzbMATHGoogle Scholar
  14. 14.
    Frantzeskou, G., Gritzalis, S., MacDonell, S.: Source Code Authorship Analysis for Supporting the Cybercrime Investigation Process. In: 1st International Conference on eBusiness and Telecommunication Networks - Security and Reliability in Information Systems and Networks Track, pp. 85–92. Kluwer Academic Publishers, Setubal (2004)Google Scholar
  15. 15.
    Gao, W., Cao, B., Shan, S., Chen, X., Zhou, D., Zhang, X., Zhao, D.: The CAS-PEAL Large-Scale Chinese Face Database and Baseline Evaluations. IEEE Transactions on Systems, Man and Cybernetics, Part A 38(1), 149–161 (2008)CrossRefGoogle Scholar
  16. 16.
    Gavrilova, M.L.: Algorithms in 3d real-time rendering and facial expression modeling, 3IA 2006 Plenary Lecture. Eurographics, 5–8 (May 2006)Google Scholar
  17. 17.
    Gavrilova, M.L.: Computational geometry and image processing techniques in biometrics: on the path to convergence in Image Pattern Recognition. In: Synthesis and Analysis in Biometrics. World Scientific Publishers, Singapore (2007)Google Scholar
  18. 18.
    Gianvecchio, S., Xie, M., Wu, Z., Wang, H.: Measurement and classification of humans and bots in internet chat. In: 17th Conference on Security Symposium, San Jose, CA, pp. 155–169 (2008)Google Scholar
  19. 19.
    Gray, A., Sallis, P., MacDonell, S.: Software Forensics: Extending Authorship Analysis Techniques to Computer Programs. In: Proc. 3rd Biannual Conf. Int. Assoc. of Forensic Linguists, IAFL 1997 (1997)Google Scholar
  20. 20.
    van Halteren, H.: Linguistic profiling for author recognition and verification. In: Proceedings of ACL 2004 (2004)Google Scholar
  21. 21.
    Holz, T., Dragone, M., O’Hare, G.M.P.: Where Robots and Virtual Agents Meet. A Survey of Social Interaction Research across Milgram’s Reality-Virtuality Continuum International Journal of Social Robotics 1(1) (January 2009)Google Scholar
  22. 22.
    Ito, J.: Fashion robot to hit Japan catwalk, PHYSorg, http://www.physorg.com/pdf156406932.pdf (retrieved June 2009)
  23. 23.
    Jain, A., Li, S.Z.: Handbook on Face Recognition. Springer, New York (2004)Google Scholar
  24. 24.
    Joachim, D., Jorg, K., Edda, L., Paass, G.: Authorship Attribution with Support Vector Machines. Applied Intelligence, 109–123 (2003)Google Scholar
  25. 25.
    Juola, P., Sofko, J.: Proving and Improving Authorship Attribution. In: Proceedings of CaSTA 2004 the Face of Text (2004)Google Scholar
  26. 26.
    Kanda, T., Ishiguro, H., Ono, T., Imai, M., Mase, K.: Multi-robot cooperation for human-robot communication. In: 11th IEEE International Workshop on Robot and Human Interactive Communication, pp. 271–276 (2002)Google Scholar
  27. 27.
    Khurshid, J., Bing-rong, H.: Military robots - a glimpse from today and tomorrow. In: 8th Control, Automation, Robotics and Vision Conference (ICARCV), China, pp. 771–777 (2004)Google Scholar
  28. 28.
    Kjell, B.: Authorship attribution of text samples using neural networks and Bayesian classifiers. In: IEEE International Conference on Systems, Man, and Cybernetics. ’Humans, Information and Technology’, San Antonio, TX, USA, pp. 1660–1664 (1994)Google Scholar
  29. 29.
    Klimpak, B., Grgic, M., Delac, K.: Acquisition of a Face Database for Video Surveillance Research. In: 48th International Symposium Focused on Multimedia Signal Processing and Communications, Zadar, pp. 111–114 (2006)Google Scholar
  30. 30.
    Klingspor, V., Demiris, J., Kaiser, M.: Human-Robot-Communication and Machine Learning. Applied Artificial Intelligence 11, 719–746 (1997)Google Scholar
  31. 31.
    Kobayashi, H., Hara, F.: Study on face robot for active human interface-mechanisms of facerobot and expression of 6 basic facial expressions. In: 2nd IEEE International Workshop on Robot and Human Communication, Tokyo, Japan, November 3-5, pp. 276–281 (1993)Google Scholar
  32. 32.
    Koppel, M., Schler, J.: Authorship Verification as a One-Class Classification Problem. In: 21st International Conference on Machine Learning, Banff, Canada, pp. 489–495 (July 2004)Google Scholar
  33. 33.
    Koppel, M., Schler, J., Mughaz, D.: Text Categorization for Authorship Verification. In: Eighth International Symposium on Artificial Intelligence and Mathematics, Fort Lauderdale, Florida (Januray 2004)Google Scholar
  34. 34.
    Lanitis, A., Taylor, C.J., Cootes, T.F.: An Automatic Face Identification System Using Flexible Appearance Models. Image and Vision Computing 13(5), 393–401 (1995)CrossRefGoogle Scholar
  35. 35.
    Lim, H.-O., Takanishi, A.: Waseda biped humanoid robots realizing human-like motion. In: 6th International Workshop on Advanced Motion Control, Nagoya, Japan, pp. 525–530 (2000)Google Scholar
  36. 36.
    Lyons, M., Plante, A., Jehan, S., Inoue, S., Akamatsu, S.: Avatar Creation using Automatic Face Recognition. In: ACM Multimedia 1998, Bristol, England, pp. 427–434 ( September 1998)Google Scholar
  37. 37.
    Lyu, M.R., King, I., Wong, T.T., Yau, E., Chan, P.W.: ARCADE: Augmented Reality Computing Arena for Digital Entertainment. In: IEEE Aerospace Conference, Big Sky, MT, March 5-12, pp. 1–9 (2005)Google Scholar
  38. 38.
    McKenna, S., Gong, S., Raja, Y.: Modelling Facial Colour and Identity with Gaussian Mixtures. Pattern Recognition 31, 1883–1892 (1998)CrossRefGoogle Scholar
  39. 39.
    Misra, D., Gaj, K.: Face Recognition CAPTCHAs. In: International Conference on Tele-communications, Internet and Web Applications and Services (AICT-ICIW 2006), February 19-25, p. 122 (2006)Google Scholar
  40. 40.
    Nood, D.d., Attema, J.: The Second Life of Virtual Reality, http://www.epn.net/interrealiteit/EPN-REPORT-The_Second_Life_of_VR.pdf (retrieved June 2009)
  41. 41.
    Oh, J.-H., Hanson, D., Kim, W.-S., Han, I.Y., Han, Y., Park, I.-W.: International Conference on Intelligent Robots and Systems, Daejeon, pp. 1428–1433 (2006)Google Scholar
  42. 42.
    Osuna, E., Freund, R., Girosi, F.: Training Support Vector Machines: An Application to Face Detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 130–136 (1997)Google Scholar
  43. 43.
    Oursler, J.N., Price, M., Yampolskiy, R.V.: Parameterized Generation of Avatar Face Dataset. In: 4th International Conference on Computer Games: AI, Animation, Mobile, In-teractive Multimedia, Educational & Serious Games, Louisville, KY (2009)Google Scholar
  44. 44.
    Patel, P., Hexmoor, H.: Designing BOTs with BDI agents. In: International Symposium on Collaborative Technologies and Systems (CTS) Carbondale, USA, pp. 180–186 (2009)Google Scholar
  45. 45.
    Rajagopalan, A., Kumar, K., Karlekar, J., Manivasakan, R., Patil, M., Desai, U., Poonacha, P., Chaudhuri, S.: Finding Faces in Photographs. In: 6th IEEE Intern. Conference on Computer Vision, pp. 640–645 (1998)Google Scholar
  46. 46.
    Ross, A.: An Introduction to Multibiometrics. In: 15th European Signal Processing Conference (EUSIPCO), Poznan, Poland (September 2007)Google Scholar
  47. 47.
    Ross, A., Jain, A.: Information fusion in biometrics. Pattern Recognition Letters 24, 2115–2125 (2003)CrossRefGoogle Scholar
  48. 48.
    Rowley, H., Baluja, S., Kanade, T.: Neural Network-Based Face Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(1), 23–38 (1998)CrossRefGoogle Scholar
  49. 49.
    Li, S., Jain, A. (eds.): Handbook of Face Recognition-Face Databases. Springer, New York (2005)zbMATHGoogle Scholar
  50. 50.
    Schneiderman, H., Kanade, T.: Probabilistic Modeling of Local Appearance and Spatial Relationships for Object Recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 45–51 (1998)Google Scholar
  51. 51.
    Spafford, E.H., Weeber, S.A.: Software Forensics: Can We Track Code to its Authors? In: 15th National Computer Security Conference, pp. 641–650 (October 1992)Google Scholar
  52. 52.
    Stamatatos, E., Fakotakis, N., Kokkinakis, G.: Automatic authorship attribution. In: Proc. nineth Conf. European Chap. Assoc. Computational Linguistics, Bergen, Norway, pp. 158–164 (June 1999)Google Scholar
  53. 53.
    Stamatatos, E., Fakotakis, N., Kokkinakis, G.: Computer-Based Authorship Attribution Without Lexical. Measures Computers and the Humanities 35(2), 193–214 (2001)CrossRefGoogle Scholar
  54. 54.
    Stolfo, S.J., Hershkop, S., Wang, K., Nimeskern, O., Hu, C.-W.: A Behavior-based Approach to Securing Email Systems. Mathematical Methods, Models and Architectures for Computer Networks Security 2776, 57–81 (2003)Google Scholar
  55. 55.
    Suler, J.: The Psychology of Cyberspace, On-line book (2009), http://psycyber.blogspot.com
  56. 56.
    Tan, X., Chen, S., Zhou, Z.-H., Zhang, F.: Face recognition from a single image per person: A survey. Pattern Recognition 39(9), 1725–1745 (2006)CrossRefzbMATHGoogle Scholar
  57. 57.
    Tang, H., Fu, Y., Tu, J., Hasegawa-Johnson, M., Huang, T.S.: Humanoid Audio–Visual Avatar With Emotive Text-to-Speech Synthesis. IEEE Transactions on Multimedia 10, 969–981 (2008)CrossRefGoogle Scholar
  58. 58.
    Teijido, D.: Information assurance in a virtual world. In: Australasian Telecommunications Networks and Applications Conference (ATNAC 2009), Canberra, Australia, November 10-12 (2009)Google Scholar
  59. 59.
    Thompson, B.G.: The State of Homeland Security, House.gov (2006), http://hsc-democrats.house.gov/SiteDocuments/ 20060814122421-06109.pdf (retrieved June 10, 2009) Google Scholar
  60. 60.
    Turk, M., Pentland, A.: Eigenfaces for Recognition. Journal of Cognitive Neuroscience 3(1), 71–86 (1991)CrossRefGoogle Scholar
  61. 61.
    Vel, O.D., Anderson, A., Corney, M., Mohay, G.: Mining Email Content for Author Identification Forensics. ACM SIGMOD Record: Special Section on Data Mining for Intrusion Detection and Threat Analysis 30(4), 55–64 (2001)CrossRefGoogle Scholar
  62. 62.
    Yampolskiy, R.V.: Behavioral Biometrics for Verification and Recognition of AI Programs. In: 20th Annual Computer Science and Engineering Graduate Conference (GradConf.), Buffalo, NY (2007)Google Scholar
  63. 63.
    Yampolskiy, R.V.: Mimicry Attack on Strategy-Based Behavioral Biometric. In: 5th International Conference on Information Technology: New Generations (ITNG 2008), Las Vegas, Nevada, April 7-9, pp. 916–921 (2008)Google Scholar
  64. 64.
    Yampolskiy, R.V., Govindaraju, V.: Behavioral Biometrics for Recognition and Verification of Game Bots. In: The 8th Annual European Game-On Conference on Simulation and AI in Computer Games (GAMEON 2007), Bologna, Italy, November 20-22 (2007)Google Scholar
  65. 65.
    Yampolskiy, R.V., Govindaraju, V.: Behavioral Biometrics for Verification and Recognition of Malicious Software Agents. In: SPIE Defense and Security Symposium, Orlando, March 16-20 (2008)Google Scholar
  66. 66.
    Yampolskiy, R.V., Govindaraju, V.: Embedded Non-Interactive Continuous Bot Detection. ACM Computers in Entertainment 5(4), 1–11 (2007)CrossRefGoogle Scholar
  67. 67.
    Yang, G., Huang, T.S.: Human Face Detection in Complex Background. Pattern Recognition 27(1), 53–63 (1994)CrossRefGoogle Scholar
  68. 68.
    Yang, M.-H., Kriegman, D.J., Ahuja, N.: Detecting Faces in Images: A Survey. IEEE Transactions On Pattern Analysis and Machine Intelligence 24(1) (2002)Google Scholar
  69. 69.
    Yanushkevich, S., Gavrilova, M., Wang, P., Srihari, S.: Image Pattern Recognition: Synthesis and Analysis in Biometrics. World Scientific Publishers, Singapore (2007)CrossRefGoogle Scholar
  70. 70.
    Yanushkevich, S., Stoica, A., Shmerko, V., Popel, D.: Inverse Problem of Biometric. CRC Press/Taylor&Francis (2005)Google Scholar
  71. 71.
    Yow, K.C., Cipolla, R.: Feature-Based Human Face Detection. Image and Vision Computing 15(9), 713–735 (1997)CrossRefGoogle Scholar
  72. 72.
    Yuan, L., Gavrilova, M., Wang, P.: Facial metamorphosis using geometrical methods for biometric applications. IJPRAI 22(3), 555–584 (2008)Google Scholar
  73. 73.
    Zhao, W., Chellappa, R., Phillips, P.J., Rosenfeld, A.: Face recognition: A literature survey. ACM Computing Surveys 35(4), 399–458 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Marina L. Gavrilova
    • 1
  • Roman Yampolskiy
    • 2
  1. 1.Dept. of Computer ScienceUniversity of CalgaryCanada
  2. 2.Dept. of Computer Engineering and Computer ScienceUniversity of LouisvilleUSA

Personalised recommendations