Advertisement

Six Degree-of-Freedom Haptic Rendering for Biomolecular Docking

  • Xiyuan Hou
  • Olga Sourina
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6670)

Abstract

Haptic device enable the user to manipulate the molecules and feel interactions during the docking process in virtual environment on the computer. Implementation of force-torque feedback allows the user to have more realistic experience during force simulation and find the optimum docking positions faster. In this paper, we propose a haptic rendering algorithm for biomolecular docking with force-torque feedback. It enables the user to experience six degree-of-freedom (DOF) haptic manipulation in molecular docking process. The linear smoothing method was proposed to improve stability of the haptic rendering during molecular docking. Collaborative docking with two devices was implemented.

Keywords

haptic rendering biomolecular docking torque feedback stable algorithm collaboration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
  2. 2.
    Jmol: an open-source java viewer for chemical structures in 3d (2010), http://jmol.sourceforge.net
  3. 3.
    Pdb - protein data bank (2010), http://www.rcsb.org/pdb
  4. 4.
    Bowie, J.: Helix packing angle preferences. Nature Structural Biology 4(11), 915–917 (1997)CrossRefGoogle Scholar
  5. 5.
    Conti, F., Barbagli, F., Morris, D., Sewell, C.: Chai 3d: An open-source library for the rapid development of haptic scenes. In: IEEE World Haptics (2005)Google Scholar
  6. 6.
    Cooper, S., Khatib, F., Treuille, A., Barbero, J., Lee, J., Beenen, M., Leaver-Fay, A., Baker, D., Popovic, Z., Players, F.: Predicting protein structures with a multiplayer online game. Nature 466(7307), 756–760 (2010)CrossRefGoogle Scholar
  7. 7.
    Damm, W., Frontera, A., Tirado-Rives, J., Jorgensen, W.: Opls all-atom force field for carbohydrates. Journal of Computational Chemistry 18(16), 1955–1970 (1997)CrossRefGoogle Scholar
  8. 8.
    Daunay, B., Micaelli, A., Regnier, S.: Energy-field reconstruction for haptic-based molecular docking using energy minimization processes. In: IEEE International Conference on Intelligent Robots and Systems, pp. 2704–2709 (2007)Google Scholar
  9. 9.
    Davies, R., John, N., MacDonald, J., Hughes, K.: Visualization of molecular quantum dynamics - a molecular visualization tool with integrated web3d and haptics. In: Web3D Symposium Proceedings, pp. 143–150 (2005)Google Scholar
  10. 10.
    DeLano, W.L.: The pymol molecular graphics system (2010), http://www.pymol.org
  11. 11.
    Férey, N., Bouyer, G., Martin, C., Bourdot, P., Nelson, J., Burkhardt, J.M.: User needs analysis to design a 3d multimodal protein-docking interface. In: 3DUI - IEEE Symposium on 3D User Interfaces 2008, pp. 125–132 (2008)Google Scholar
  12. 12.
    Férey, N., Nelson, J., Martin, C., Picinali, L., Bouyer, G., Tek, A., Bourdot, P., Burkhardt, J., Katz, B., Ammi, M., Etchebest, C., Autin, L.: Multisensory vr interaction for protein-docking in the corsaire project. Virtual Reality 13(4), 273–293 (2009)CrossRefGoogle Scholar
  13. 13.
    Gregory, A., Mascarenhas, A., Ehmann, S., Lin, M., Manocha, D.: Six degree-of-freedom haptic display of polygonal models. In: Proceedings of the IEEE Visualization Conference, pp. 139–145+549 (2000)Google Scholar
  14. 14.
    Heyd, J., Birmanns, S.: Global interactive docking and hessian filtering for multi-resolution fitting of biomolecular assemblies. Microscopy and Microanalysis 14(suppl. 2), 130–131 (2008)CrossRefGoogle Scholar
  15. 15.
    Heyd, J., Birmanns, S.: Immersive structural biology: a new approach to hybrid modeling of macromolecular assemblies. Virtual Reality 13, 245–255 (2009)CrossRefGoogle Scholar
  16. 16.
    Hou, X., Olga, S.: Haptic rendering algorithm for biomolecular docking with torque force. In: 2010 International Conference on Cyberworlds, CW 2010, pp. 25–31 (2010)Google Scholar
  17. 17.
    Jorgensen, W.L., Maxwell, D.S., Tirado-Rives, J.: Development and testing of the opls all-atom force field on conformational energetics and properties of organic liquids. Journal of the American Chemical Society 118(45), 11225–11236 (1996)CrossRefGoogle Scholar
  18. 18.
    Lai-Yuen, S., Lee, Y.S.: Interactive computer-aided design for molecular docking and assembly. Computer-Aided Design and Applications 3(6), 701–709 (2006)CrossRefGoogle Scholar
  19. 19.
    Lai-Yuen, S.K., Lee, Y.S.: Computer-aided molecular design (camd) with force-torque feedback. In: International Conference on Computer Aided Design and Computer Graphics, pp. 199–204 (2005)Google Scholar
  20. 20.
    Lee, Y.G., Lyons, K.: Smoothing haptic interaction using molecular force calculations. CAD Computer Aided Design 36(1), 75–90 (2004)CrossRefGoogle Scholar
  21. 21.
    Liu, Q., Sourin, A.: Function-defined shape metamorphoses in visual cyberworlds. Visual Computer 22(12), 977–990 (2006)CrossRefGoogle Scholar
  22. 22.
    Martin, M.: Comparison of the amber, charmm, compass, gromos, opls, trappe and uff force fields for prediction of vapor-liquid coexistence curves and liquid densities. Fluid Phase Equilibria 248(1), 50–55 (2006)CrossRefGoogle Scholar
  23. 23.
    Ming, O.Y., Beard, D., Brooks, Jr., F.: Force display performs better than visual display in a simple 6-d docking task. In: IEEE International Conference on Robotics and Automation, 1989, vol. 3, pp. 1462–1466 (May 1989)Google Scholar
  24. 24.
    Nagata, H., Mizushima, H., Tanaka, H.: Concept and prototype of protein-ligand docking simulator with force feedback technology. Bioinformatics 18(1), 140–146 (2002)CrossRefGoogle Scholar
  25. 25.
    Ouh-young, M., Pique, M., Hughes, J., Srinivasan, N., Brooks, Jr., F.P.: Using a manipulator for force display in molecular docking. In: 1988 IEEE International Conference on Robotics and Automation, vol. 3, pp. 1824–1829 (April 1988)Google Scholar
  26. 26.
    Persson, P., Cooper, M., Tibell, L., Ainsworth, S., Ynnerman, A., Jonsson, B.H.: Designing and evaluating a haptic system for biomolecular education. In: Proceedings - IEEE Virtual Reality, pp. 171–178 (2007)Google Scholar
  27. 27.
    Prins, J., Hermans, J., Mann, G., Nyland, L., Simons, M.: Virtual environment for steered molecular dynamics. Future Generation Computer Systems 15(4), 485–495 (1999)CrossRefGoogle Scholar
  28. 28.
    Rizzo, R., Jorgensen, W.: Opls all-atom model for amines: Resolution of the amine hydration problem. Journal of the American Chemical Society 121(20), 4827–4836 (1999)CrossRefGoogle Scholar
  29. 29.
    Sankaranarayanan, G., Weghorst, S., Sanner, M., Gillet, A., Olson, A.: Role of haptics in teaching structural molecular biology. In: 11th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, HAPTICS 2003, pp. 363–366 (2003)Google Scholar
  30. 30.
    Sayle, R., Milner-White, E.: Rasmol: Biomolecular graphics for all. Trends in Biochemical Sciences 20(9), 374–376 (1995)CrossRefGoogle Scholar
  31. 31.
    Sourina, O., Korolev, N.: Visual mining and spatio-temporal querying in molecular dynamics. Journal of Computational and Theoretical Nanoscience 2(4), 492–498 (2005)CrossRefGoogle Scholar
  32. 32.
    Sourina, O., Torres, J., Wang, J.: Visual haptic-based biomolecular docking and its applications in E-learning. In: Pan, Z., Cheok, A.D., Müller, W., El Rhalibi, A. (eds.) Transactions on Edutainment II. LNCS, vol. 5660, pp. 105–118. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  33. 33.
    Sourina, O., Torres, J., Wang, J.: Visual haptic-based biomolecular docking. In: Proceedings of the 2008 International Conference on Cyberworlds, CW 2008, pp. 240–247 (2008)Google Scholar
  34. 34.
    Stocks, M., Hayward, S., Laycock, S.: Interacting with the biomolecular solvent accessible surface via a haptic feedback device. BMC Structural Biology 9 (2009)Google Scholar
  35. 35.
    Stone, J.E., Gullingsrud, J., Schulten, K.: A system for interactive molecular dynamics simulation, pp. 191–194 (2001)Google Scholar
  36. 36.
    Subasi, E., Basdogan, C.: A new haptic interaction and visualization approach for rigid molecular docking in virtual environments. Presence: Teleoperators and Virtual Environments 17(1), 73–90 (2008)CrossRefGoogle Scholar
  37. 37.
    Wei, L., Sourin, A., Sourina, O.: Function-based haptic interaction in cyberworlds. In: Proceedings - 2007 International Conference on Cyberworlds, CW 2007, pp. 225–232 (2007)Google Scholar
  38. 38.
    Wei, L., Sourin, A., Sourina, O.: Function-based visualization and haptic rendering in shared virtual spaces. Visual Computer 24(10), 871–880 (2008)CrossRefGoogle Scholar
  39. 39.
    Weiner, S.J., Kollman, P.A., Case, D.A., Singh, U.C., Ghio, C., Alagona, G., Profeta, S., Weiner, P.: A new force field for molecular mechanical simulation of nucleic acids and proteins. Journal of the American Chemical Society 106(3), 765–784 (1984)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Xiyuan Hou
    • 1
  • Olga Sourina
    • 1
  1. 1.Nanyang Technological UniversitySingapore

Personalised recommendations