A Cascade Decomposition of Weighted Finite Transition Systems

  • Manfred Droste
  • Ingmar Meinecke
  • Branimir Šešelja
  • Andreja Tepavčević
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6795)


We consider weighted finite transition systems with weights from naturally ordered semirings. Such semirings comprise distributive lattices as well as the natural numbers with ordinary addition and multiplication, and the max -plus-semiring. For these systems we explore the concepts of covering and cascade product. We show a cascade decomposition result for such weighted finite transition systems using special partitions of the state set of the system. This extends a classical result of automata theory to the weighted setting.


Transition System Distributive Lattice Wreath Product Weighted Setting Automaton Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Béal, M.-P., Lombardy, S., Sakarovitch, J.: On the equivalence of ℤ-automata. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 397–409. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Dömösi, P., Nehaniv, C.L.: Algebraic Theory of Automata Networks. In: SIAM Monographs on Discrete Mathematics and Applications, vol. 11. Society for Industrial and Applied Mathematics, Philadelphia (2004)Google Scholar
  3. 3.
    Droste, M., Kuich, W., Vogler, H. (eds.): Handbook of Weighted Automata. EATCS Monographs in Theoretical Computer Science. Springer, Heidelberg (2009)zbMATHGoogle Scholar
  4. 4.
    Eilenberg, S.: Automata, Languages, and Machines, vol. A. Academic Press, London (1974)zbMATHGoogle Scholar
  5. 5.
    Holcombe, W.M.L.: Algebraic Automata Theory. Cambridge University Press, Cambridge (1982)CrossRefzbMATHGoogle Scholar
  6. 6.
    Kleene, S.: Representations of events in nerve nets and finite automata. In: Shannon, C., McCarthy, J. (eds.) Automata Studies, pp. 3–42. Princeton University Press, Princeton (1956)Google Scholar
  7. 7.
    Krohn, K., Rhodes, J.L.: Algebraic theory of machines, I. Prime decomposition theorem for finite semigroups and machines. Trans. Amer. Math. Soc. 116, 450–464 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Mordeson, J.N., Malik, D.S.: Fuzzy Automata and Languages – Theory and Applications. Computational Mathematics Series. Chapman & Hall, CRC (2002)CrossRefzbMATHGoogle Scholar
  9. 9.
    Rhodes, J.L., Steinberg, B.: The q-Theory of Finite Semigroups. Springer, Heidelberg (2008)zbMATHGoogle Scholar
  10. 10.
    Schützenberger, M.: On the definition of a family of automata. Information and Control 4, 245–270 (1961)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Straubing, H.: Finite Automata, Formal Logic, and Circuit Complexity. Birkäuser, Basel (1994)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Manfred Droste
    • 1
  • Ingmar Meinecke
    • 1
  • Branimir Šešelja
    • 2
  • Andreja Tepavčević
    • 2
  1. 1.Institut für InformatikUniversität LeipzigLeipzigGermany
  2. 2.Department of Mathematics and InformaticsUniversity of Novi SadNovi SadSerbia

Personalised recommendations