Deciding Networks of Evolutionary Processors

  • Florin Manea
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6795)


In this paper we discuss the usage of Accepting Networks of Evolutionary Processors (ANEPs for short) as deciding devices. In this context we define a new halting condition for this model, which seems more coherent with the rest of the theory than the previous such definition, and show that all the computability results reported so far remain valid in the new framework. Moreover, we give a direct and efficient simulation of an arbitrary ANEP by a complete ANEP, thus, showing that the efficiency of deciding a language by ANEPs is not influenced by the network’s topology. Finally, we obtain a surprising characterization of P NP[log] as the class of languages that can be decided in polynomial time by ANEPs.


Turing Machine Output Node Consecutive Step Short Computation Communication Step 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Margenstern, M., Mitrana, V., Jesús Pérez-Jímenez, M.J.: Accepting Hybrid Networks of Evolutionary Processors. In: Ferretti, C., Mauri, G., Zandron, C. (eds.) DNA 2004. LNCS, vol. 3384, pp. 235–246. Springer, Heidelberg (2005)Google Scholar
  2. 2.
    Hillis, W.D.: The Connection Machine. MIT Press, Cambridge (1986)CrossRefGoogle Scholar
  3. 3.
    Csuhaj-Varjú, E., Salomaa, A.: Networks of Parallel Language Processors. In: Păun, G., Salomaa, A. (eds.) New Trends in Formal Languages. LNCS, vol. 1218, pp. 299–318. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  4. 4.
    Manea, F., Martín-Vide, C., Mitrana, V.: Accepting networks of evolutionary word and picture processors: A survey. In: Martín-Vide, C. (ed.) Scientific Applications of Language Methods, pp. 525–560. World Scientific, Singapore (2010)CrossRefGoogle Scholar
  5. 5.
    Bottoni, P., Labella, A., Manea, F., Mitrana, V., Sempere, J.M.: Filter Position in Networks of Evolutionary Processors Does Not Matter: A Direct Proof. In: Deaton, R., Suyama, A. (eds.) DNA 15. LNCS, vol. 5877, pp. 1–11. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Rozenberg, G., Salomaa, A.: Handbook of Formal Languages. Springer, New York (1997)CrossRefzbMATHGoogle Scholar
  7. 7.
    Manea, F., Margenstern, M., Mitrana, V., Perez-Jimenez, M.J.: A New Characterization of NP, P and PSPACE with Accepting Hybrid Networks of Evolutionary Processors. Theor. Comp. Sys. 46(2), 174–192 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Loos, R., Manea, F., Mitrana, V.: Small Universal Accepting Hybrid Networks of Evolutionary Processors. Acta Inf. 47(2), 133–146 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Alhazov, A., Csuhaj-Varjú, E., Martín-Vide, C., Rogozhin, Y.: On the size of computationally complete hybrid networks of evolutionary processors. Theor. Comput. Sci. 410(35), 3188–3197 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Manea, F.: Deciding networks of evolutionary processors. Technical report (2010),
  11. 11.
    Manea, F.: Deciding according to the shortest computations. In: Normann, D. (ed.) CiE 2011. LNCS, vol. 6735, pp. 191–200. Springer, Heidelberg (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Florin Manea
    • 1
  1. 1.Fakultät für Informatik PSF 4120Otto-von-Guericke-Universität MagdeburgMagdeburgGermany

Personalised recommendations