There Does Not Exist a Minimal Full Trio with Respect to Bounded Context-Free Languages

  • Juha Kortelainen
  • Tuukka Salmi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6795)


We solve an old conjecture of Autebert et al. [1] saying that there does not exist any minimal full trio with respect to bounded context-free languages.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Autebert, J.-M., Beauquier, J., Boasson, L., Latteux, M.: Very small families of algebraic nonrational languages. In: Formal Language Theory, Perspectives and Open Problems, pp. 89–107. Academic Press, Orland (1980)Google Scholar
  2. 2.
    Salmi, T.: Very Small Families Generated by Bounded and Unbounded Context-Free Languages. PhD thesis, University of Oulu, Department of Mathematical Sciences (2009)Google Scholar
  3. 3.
    Autebert, J.M., Beauquier, J., Boasson, L., Nivat, M.: Quelques problèmes ouverts en théorie des langages algébriques. RAIRO Informatique Theorique/Theoretical Informatics 13(4), 363–378 (1979)CrossRefzbMATHGoogle Scholar
  4. 4.
    Berstel, J., Boasson, L.: Une suite décroissante de cônes rationnels. In: Proceedings of the 2nd Colloquium on Automata, Languages and Programming, pp. 383–397. Springer, London (1974)CrossRefGoogle Scholar
  5. 5.
    Ginsburg, S.: The Mathematical Theory of Context-Free Languages. McGraw-Hill, Inc., New York (1966)zbMATHGoogle Scholar
  6. 6.
    Ginsburg, S.: Algebraic and Automata-Theoretic Properties of Formal Languages. Elsevier Science Inc., New York (1975)zbMATHGoogle Scholar
  7. 7.
    Eilenberg, S., Schützenberger, M.P.: Rational sets in commutative monoids. Journal of Algebra 13, 173–191 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Ito, R.: Every semilinear set is a finite union of disjoint linear sets. Journal of Computer and System Sciences 3(2), 221–231 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Berstel, J.: Transductions and Context-Free Languages. Teubner Studienbücher, Stuttgart (1979)CrossRefzbMATHGoogle Scholar
  10. 10.
    Goldstine, J.: Substitution and bounded languages. Journal of Computer and System Sciences 6(1), 9–29 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Kortelainen, J.: Every commutative quasirational language is regular. In: Proceedings of the 12th Colloquium on Automata, Languages and Programming, pp. 348–355. Springer, London (1985)CrossRefGoogle Scholar
  12. 12.
    Blattner, M., Latteux, M.: Parikh-bounded languages. In: Proceedings of the 9th Colloquium on Automata, Languages and Programming, pp. 316–323. Springer, London (1981)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Juha Kortelainen
    • 1
  • Tuukka Salmi
    • 2
  1. 1.Department of Information Processing ScienceUniversity of OuluFinland
  2. 2.Elektrobit CorporationOulu

Personalised recommendations