On Two-Way Transducers

  • Oscar H. Ibarra
  • Hsu-Chun Yen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6795)


We look at some classes of two-way transducers with auxiliary memory and investigate their containment and equivalence problems. We believe that our results are the strongest known to date concerning two-way transducers.


two-way transducer containment problem equivalence problem 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Culik, K., Karhumaki, J.: The equivalence of finite valued transducers (on HDTOL languages) is decidable. Theoret. Comput. Sci. 47, 71–84 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Ginsburg, S., Greibach, S.: Deterministic context-free languages. Inform. and Control 9, 620–648 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Griffiths, T.: The unsolvability of the equivalence problem for Λ-free nondeterministic generalized sequential machines. J. Assoc. Comput. Mach. 15, 409–413 (1968)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Gurari, E.: The equivalence problem for deterministic two-way sequential transducers is decidable. SIAM J. Comput. 11, 448–452 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Gurari, E., Ibarra, O.H.: The complexity of decision problems for finite-turn multicounter machines. J. Comput. Syst. Sci. 22, 220–229 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Gurari, E., Ibarra, O.H.: A note on finite-valued and finitely ambiguous transducers. Math. Systems Theory 16, 61–66 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Hopcroft, J., Ullman, J.: Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, Reading (1979)zbMATHGoogle Scholar
  8. 8.
    Ibarra, O.H.: Reversal-bounded multicounter machines and their decision problems. J. Assoc. Comput. Mach. 25, 116–133 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Ibarra, O.H.: The unsolvability of the equivalence problem for ε-free NGSM’s with unary input (output) alphabet and applications. SIAM J. Computing 7, 524–532 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Ibarra, O.H.: On the universe, disjointness, and containment problems for simple machines. Inf. Comput. 208, 1273–1282 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Ibarra, O.H., Seki, S.: Characterizations of bounded semilinear languages by one-way and two-way deterministic machines. In: Proc. 13th Int. Conf. on Automata and Formal Languages (to appear, 2011) Google Scholar
  12. 12.
    Weber, A.: Decomposing finite-valued trasnsducers and deciding their equivalence. SIAM. J. on Computing 22, 175–202 (1993)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Oscar H. Ibarra
    • 1
  • Hsu-Chun Yen
    • 2
  1. 1.Dept. of Computer ScienceUniv. of CaliforniaSanta BarbaraUSA
  2. 2.Dept. of Electrical EngineeringNational Taiwan Univ.TaipeiTaiwan, ROC

Personalised recommendations