Nodes Connected by Path Languages

  • Markus Holzer
  • Martin Kutrib
  • Ursula Leiter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6795)


We investigate reachability problems on different types of labeled graphs constrained to formal languages from a family \(\mathcal{L}\). If every language in \(\mathcal{L}\) is accepted by a one-way nondeterministic storage automaton, then we give an appealing characterization of the computational complexity of the labeled graph reachability problem in terms of two-way nondeterministic storage automata with auxiliary worktape that is logarithmic-space bounded. Moreover, we also consider acyclic graphs in the underlying reachability instance, obtaining a lower bound result for auxiliary storage automata that are simultaneously space and time restricted.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aho, A.V.: Indexed grammars–An extension of context-free grammars. J. ACM 15, 647–671 (1968)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Allender, E., Barrington, D.A.M., Chakraborty, T., Datta, S., Roy, S.: Planar and grid graph reachability problems. Theoret. Comput. Sci. 45, 675–723 (2009)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge (2008)zbMATHGoogle Scholar
  4. 4.
    Barrett, C.L., Jacob, R., Marathe, M.V.: Formal-language-constrained path problems. SIAM J. Comput. 30, 809–837 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Beeri, C.: Two-way nested stack automata are equivalent to two-way stack automata. J. Comput. System Sci. 10 (1975)Google Scholar
  6. 6.
    Blum, M., Kozen, D.: On the power of the compass (or, why mazes are easier to search than graphs). In: Symposium on Foundations of Computer Science (FOCS 1978), pp. 132–142. IEEE, Los Alamitos (1978)CrossRefGoogle Scholar
  7. 7.
    Brandt, F., Fischer, F.A., Holzer, M.: On iterated dominance, matrix elimination, and matched paths. In: Symposium on Theoretical Aspects of Computer Science (STACS 2010). LIPIcs, vol. 5, pp. 107–118. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2010)Google Scholar
  8. 8.
    Cook, S.A.: Characterizations of pushdown machines in terms of time-bounded computers. J. ACM 18, 4–18 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Dassow, J., Lange, K.J.: Computational calculus and hardest languages of automata with abstract storages. In: Budach, L. (ed.) FCT 1991. LNCS, vol. 529, pp. 200–209. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  10. 10.
    Engelfriet, J., Hoogeboom, H.J.: Automata with storage on infinite words. In: Ronchi Della Rocca, S., Ausiello, G., Dezani-Ciancaglini, M. (eds.) ICALP 1989. LNCS, vol. 372, pp. 289–303. Springer, Heidelberg (1989)CrossRefGoogle Scholar
  11. 11.
    Greenlaw, R., Hoover, H.J., Ruzzo, W.L.: Limits to Parallel Computation: P-Completeness Theory. Oxford University Press, Oxford (1995)zbMATHGoogle Scholar
  12. 12.
    Holzer, M., McKenzie, P.: Alternating and empty alternating auxiliary stack automata. Theoret. Comput. Sci. (1-3), 307–326 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, Reading (1979)zbMATHGoogle Scholar
  14. 14.
    Ibarra, O.H.: Characterizations of some tape and time complexity classes of turing machines in terms of multihead and auxiliary stack automata. J. Comput. System Sci. 5, 88–117 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Jenner, B., Kirsig, B.: Characterizing the polynomial hierarchy by alternating auxiliary pushdown automata. RAIRO Inform. Theor. 23, 87–99 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Jones, N.D., Lien, Y.E., Laaser, W.T.: New problems complete for nondeterministic log space. Math. Systems Theory 10, 1–17 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading (1994)zbMATHGoogle Scholar
  18. 18.
    Reingold, O.: Undirected connectivity in log-space. J. ACM 55, 1–24 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
  20. 20.
    Sudborough, I.H.: On the Tape Complexity of Deterministic Context-Free Languages. J. ACM 25, 405–414 (1978)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Markus Holzer
    • 1
  • Martin Kutrib
    • 1
  • Ursula Leiter
    • 1
  1. 1.Institut für InformatikUniversität GiessenGiessenGermany

Personalised recommendations