Languages vs. ω-Languages in Regular Infinite Games

  • Namit Chaturvedi
  • Jörg Olschewski
  • Wolfgang Thomas
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6795)


Infinite games are studied in a format where two players, called Player 1 and Player 2, generate a play by building up an ω-word as they choose letters in turn. A game is specified by the ω-language which contains the plays won by Player 2. We analyze ω-languages generated from certain classes \({\cal K}\) of regular languages of finite words (called *-languages), using natural transformations of *-languages into ω-languages. Winning strategies for infinite games can be represented again in terms of *-languages. Continuing work of Selivanov (2007) and Rabinovich et al. (2007), we analyze how these “strategy *-languages” are related to the original language class \({\cal K}\). In contrast to that work, we exhibit classes \({\cal K}\) where strategy representations strictly exceed \({\cal K}\).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Büchi, J.R., Landweber, L.H.: Solving sequential conditions by finite-state strategies. Transactions of the American Mathematical Society 138, 295–311 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Cohen, R.S., Brzozowski, J.A.: Dot-depth of star-free events. Journal of Computer and System Sciences 5, 1–16 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games. LNCS, vol. 2500. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  4. 4.
    Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to automata theory, languages, and computation, 2nd edn. Addison-Wesley series in computer science. Addison-Wesley-Longman (2001)Google Scholar
  5. 5.
    Perrin, D., Pin, J.-É.: Infinite Words. Elsevier, Amsterdam (2004)zbMATHGoogle Scholar
  6. 6.
    Pin, J.-É.: Varieties of Formal Languages. In: North Oxford, London (1986)Google Scholar
  7. 7.
    Pin, J.-É.: Positive varieties and infinite words. In: Lucchesi, C.L., Moura, A.V. (eds.) LATIN 1998. LNCS, vol. 1380, pp. 76–87. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  8. 8.
    Rabinovich, A., Thomas, W.: Logical refinements of church’s problem. In: Duparc, J., Henzinger, T. (eds.) CSL 2007. LNCS, vol. 4646, pp. 69–83. Springer, Heidelberg (2007)Google Scholar
  9. 9.
    Selivanov, V.L.: Fine hierarchy of regular aperiodic ω-languages. In: Harju, T., Karhumäki, J., Lepistö, A. (eds.) DLT 2007. LNCS, vol. 4588, pp. 399–410. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Selivanov, V.L.: Fine hierarchy of regular aperiodic ω-languages. International Journal of Foundations of Computer Science 19(3), 649–675 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Simon, I.: Hierarchies of events with dot-depth one. PhD thesis, University of Waterloo (1972)Google Scholar
  12. 12.
    Simon, I.: Piecewise testable events. In: Brakhage, H. (ed.) Automata Theory and Formal Languages. LNCS, vol. 33, pp. 214–222. Springer, Heidelberg (1975)Google Scholar
  13. 13.
    Staiger, L., Wagner, K.W.: Automatentheoretische und automatenfreie Charakterisierungen topologischer Klassen regulärer Folgenmengen. Elektronische Informationsverarbeitung und Kybernetik 10(7), 379–392 (1974)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Stern, J.: Characterizations of some classes of regular events. Theoretical Computer Science 35, 17–42 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Straubing, H.: Finite Automata, Formal Logic, and Circuit Complexity. Birkhäuser Verlag, Basel (1994)Google Scholar
  16. 16.
    Thomas, W.: Classifying regular events in symbolic logic. Journal of Computer and System Sciences 25(3), 360–376 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Thomas, W.: Languages, automata, and logic. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol. 3, pp. 389–455. Springer, New York (1997)CrossRefGoogle Scholar
  18. 18.
    Thomas, W.: Church’s problem and a tour through automata theory. In: Avron, A., Dershowitz, N., Rabinovich, A. (eds.) Pillars of Computer Science. LNCS, vol. 4800, pp. 635–655. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Namit Chaturvedi
    • 1
  • Jörg Olschewski
    • 1
  • Wolfgang Thomas
    • 1
  1. 1.Lehrstuhl Informatik 7RWTH Aachen UniversityGermany

Personalised recommendations