Skip to main content

Witness Rectangle Graphs

  • Conference paper
Algorithms and Data Structures (WADS 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6844))

Included in the following conference series:

Abstract

In a witness rectangle graph (WRG) on vertex point set P with respect to witness point set W in the plane, two points x,y in P are adjacent whenever the open rectangle with x and y as opposite corners contains at least one point in W. WRGs are representative of a larger family of witness proximity graphs introduced in two previous papers.

We study graph-theoretic properties of WRGs. We prove that any WRG has at most two non-trivial connected components. We bound the diameter of the non-trivial connected components of a WRG in both the one-component and two-component cases. In the latter case, we prove that a graph is representable as a WRG if and only if each component is a co-interval graph, thereby providing a complete characterization of WRGs of this type. We also completely characterize trees drawable as WRGs.

Finally, we conclude with some related results on the number of points required to stab all the rectangles defined by a set of n points.

Research of B.A. has been partially supported by NSA MSP Grants H98230-06-1-0016 and H98230-10-1-0210. Research of B.A. and M.D. has also been supported by a grant from the U.S.-Israel Binational Science Foundation and by NSF Grant CCF-08-30691. Research by F.H. has been partially supported by projects MEC MTM2006-01267 and MTM2009-07242, and Gen. Catalunya DGR 2005SGR00692 and 2009SGR1040.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aronov, B., Dulieu, M., Hurtado, F.: Witness (Delaunay) graphs. Computational Geometry Theory and Applications 44(6-7), 329–344 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aronov, B., Dulieu, M., Hurtado, F.: Witness Gabriel graphs. Computational Geometry Theory and Applications (to appear)

    Google Scholar 

  3. Aurenhammer, F., Klein, R.: Voronoi diagrams. In: Sack, J., Urrutia, G. (eds.) Handbook of Computational Geometry, ch.5, pp. 201–290. Elsevier Science Publishing, Amsterdam (2000)

    Chapter  Google Scholar 

  4. Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms for the Visualization of Graphs. Prentice Hall, Englewood Cliffs (1998)

    MATH  Google Scholar 

  5. Di Battista, G., Lenhart, W., Liotta, G.: Proximity drawability: A survey. In: Tamassia, R., Tollis, I.G. (eds.) GD 1994. LNCS, vol. 894, pp. 328–339. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  6. Di Battista, G., Liotta, G., Whitesides, S.: The strength of weak proximity. J. Discrete Algorithms 4(3), 384–400 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. de Berg, M., Carlsson, S., Overmars, M.: A general approach to dominance in the plane. J. Algorithms 13(2), 274–296 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chartrand, G., Lesniak, L.: Graphs and Digraphs, 4th edn. Chapman & Hall, Boca Raton (2004)

    MATH  Google Scholar 

  9. Collette, S.: Regions, Distances and Graphs., PhD thesis. Université Libre de Bruxelles (2006)

    Google Scholar 

  10. Czyzowicz, J., Kranakis, E., Urrutia, J.: Dissections, cuts, and triangulations. In: Proc. 11th Canadian Conf. Comput. Geometry, pp. 154–157 (1999)

    Google Scholar 

  11. Dillencourt, M.B.: Toughness and Delaunay triangulations. Discrete Comput. Geometry 5(6), 575–601 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dillencourt, M.B.: Realizability of Delaunay triangulations. Inf. Proc. Letters 33(6), 283–287 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dillencourt, M.B., Smith, W.D.: Graph-theoretical conditions for inscribability and Delaunay realizability. Discrete Math. 161(1-3), 63–77 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dulieu, M.: Witness proximity graphs. PhD thesis. Polytechnic Institute of NYU, Brooklyn, New York (2012)

    Google Scholar 

  15. Dushnik, B., Miller, E.W.: Partially ordered sets. American J. Math. 63, 600–619 (1941)

    Article  MathSciNet  MATH  Google Scholar 

  16. Erdős, P., Fajtlowicz, S., Hoffman, A.J.: Maximum degree in graphs of diameter 2. Networks 10(1), 87–90 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fortune, S.: Voronoi diagrams and Delaunay triangulations. In: Goodman, J.E., O’Rourke, J. (eds.) Handbook of Discrete and Computational Geometry, 2nd edn., ch.23, pp. 513–528. CRC Press, Boca Raton (2004)

    Google Scholar 

  18. Habib, M., McConnell, R., Paul, C., Viennot, L.: Lex-BFS and partition refinement, with applications to transitive orientation, interval graph recognition and consecutive ones testing. Theoretical Computer Science 234(1-2), 59–84 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jaromczyk, J.W., Toussaint, G.T.: Relative neighborhood graphs and their relatives. Proc. IEEE 80(9), 1502–1517 (1992)

    Article  Google Scholar 

  20. Katchalski, M., Meir, A.: On empty triangles determined by points in the plane. Acta Math. Hungar. 51, 23–328 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  21. Liotta, G.: Proximity Drawings. In: Tamassia, R. (ed.) Handbook of Graph Drawing and Visualization. Chapman & Hall/CRC Press, (in preparation)

    Google Scholar 

  22. Liotta, G., Lubiw, A., Meijer, H., Whitesides, S.: The rectangle of influence drawability problem. Computational Geometry Theory and Applications 10(1), 1–22 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. McConnell, R.: Personal communication (2011)

    Google Scholar 

  24. McKay, B.D., Miller, M., Širáň, J.: A note on large graphs of diameter two and given maximum degree. Combin. Theory Ser. B 74, 110–118 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  25. Miller, M., Širáň, J.: Moore graphs and beyond: A survey of the degree/diameter problem. Electron. J. Combin. DS14, 61 (2005)

    MATH  Google Scholar 

  26. Sakai, T., Urrutia, J.: Covering the convex quadrilaterals of point sets. Graphs and Combinatorics 23(1), 343–357 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Toussaint, G.T. (ed.): Computational Morphology. North-Holland, Amsterdam (1988)

    MATH  Google Scholar 

  28. Weisstein, E.W.: Graph Join. From MathWorld–A Wolfram Web Resource, http://mathworld.wolfram.com/GraphJoin.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Aronov, B., Dulieu, M., Hurtado, F. (2011). Witness Rectangle Graphs. In: Dehne, F., Iacono, J., Sack, JR. (eds) Algorithms and Data Structures. WADS 2011. Lecture Notes in Computer Science, vol 6844. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22300-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22300-6_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22299-3

  • Online ISBN: 978-3-642-22300-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics