Skip to main content

Reductive Reasoning Rough and Fuzzy Sets as Frameworks for Reductive Reasoning

  • Conference paper
Approximate Reasoning by Parts

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 20))

Abstract

Reductive reasoning, in particular inductive reasoning, Bocheński [9], Łukasiewicz [30], is concerned with finding a proper p satisfying a premise pq for a given conclusion q. With some imprecision of language, one can say that its concern lies in finding a right cause for a given consequence. As such, inductive reasoning does encompass many areas of research like Machine Learning, see Mitchell [37], Pattern Recognition and Classification, see Duda et al. [16], Data Mining and Knowledge Discovery, see Kloesgen and Zytkow [26], all of which are concerned with a right interpretation of data and a generalization of findings from them. The matter of induction opens up an abyss of speculative theories, concerned with hypotheses making, verification and confirmation of them, means for establishing optimality criteria, consequence relations, non–monotonic reasoning etc. etc., see, e.g., Carnap [12], Popper [55], Hempel [22], Bochman [10].

Our purpose in this chapter is humble; we wish to give an insight into two paradigms intended for inductive reasoning and producing decision rules from data: rough set theory and fuzzy set theory.

We pay attention to structure and basic tools of these paradigms; rough sets are interesting for us, as forthcoming exposition of rough mereology borders on rough sets and uses knowledge representation in the form of information and decision systems as studied in rough set theory. Fuzzy set theory, as already observed in Introduction, is to rough mereology as set theory is to mereology, a guiding motive; in addition, main tools of fuzzy set theory: t–norms and residual implications are also of fundamental importance to rough mereology, as demonstrated in following chapters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of items in large databases. In: Proceedings ACM Sigmod Conf., Washington, DC, pp. 207–216 (1993)

    Google Scholar 

  2. Baader, F., Calvanese, D., McGuiness, D.L., Nardi, D., Patel–Schneider, P.F. (eds.): The Description Logic Handbook: Theory, Implementation and Applications. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  3. Barnsley, M.F.: Fractals Everywhere. Academic Press, New York (1988)

    MATH  Google Scholar 

  4. Bazan, J.G.: A comparison of dynamic and non–dynamic rough set methods for extracting laws from decision tables. In: Polkowski, L., Skowron, A. (eds.) Rough Sets in Knowledge Discovery, vol. 1, pp. 321–365. Physica Verlag, Heidelberg (1998)

    Google Scholar 

  5. Bazan, J.G., Nguyen, H.S., Nguyen, S.H., Synak, P., Wróblewski, J.: Rough set algorithms in classification problems. In: Polkowski, L., Tsumoto, S., Lin, T.Y. (eds.) Rough Set Methods and Applications. New Developments in Knowledge Discovery in Information Systems, pp. 49–88. Physica Verlag, Heidelberg (2000)

    Google Scholar 

  6. Van Benthem, J.: Essays in Logical Semantics. D. Reidel, Dordrecht (1988)

    Google Scholar 

  7. Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press, Oxford (1995)

    Google Scholar 

  8. Black, M.: Vagueness: An exercise in logical analysis. Philosophy of Science 4, 427–455 (1937)

    Article  Google Scholar 

  9. Bocheński, I.M.: Die Zeitgönossischen Denkmethoden. A. Francke AG, Bern (1954)

    Google Scholar 

  10. Bochman, A.: A Logical Theory of Nonmonotonic Inference and Belief Change. Springer, Berlin (2001)

    MATH  Google Scholar 

  11. Brown, F.M.: Boolean Reasoning: The Logic of Boolean Equations. Dover, New York (2003)

    MATH  Google Scholar 

  12. Carnap, R.: Logical Foundations of Probability. University of Chicago Press, Chicago (1950)

    MATH  Google Scholar 

  13. Dubois, D., Prade, H.: Fuzzy sets in approximate reasoning. Part 1: Inference with possibility distributions. Fuzzy Sets and Systems 40, 143–202 (1990)

    MathSciNet  Google Scholar 

  14. Dubois, D., Lang, J., Prade, H.: Fuzzy sets in approximate reasoning. Part 2: Logical approaches. Fuzzy Sets and Systems 40, 203–244 (1991)

    MathSciNet  MATH  Google Scholar 

  15. Dubois, D., Prade, H.: A survey of belief revision and updating rules in various uncertainty models. International Journal of Intelligent Systems 9(1), 61–100 (1994)

    Article  MATH  Google Scholar 

  16. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. John Wiley and Sons, New York (2001)

    MATH  Google Scholar 

  17. Faucett, W.M.: Compact semigroups irreducibly connected between two idempotents. Proc. Amer. Math.Soc. 6, 741–747 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fleck, L.: O niektórych swoistych cechach myślenia lekarskiego (On some specific patterns of medical reasoning, in Polish). Archiwum Historji i Filozofji Medycyny oraz Historji Nauk Przyrodniczych 6, 55–64 (1927); Cohen R. S., Schnelle T.: Cognition and Fakt. Materials on Ludwik Fleck. D. Reidel, Dordrecht (1986)

    Google Scholar 

  19. Frege, G.: Grundgsetzte der Arithmetik II. Verlag Hermann Pohle, Jena (1903)

    Google Scholar 

  20. Grzymala–Busse, J.W.: LERS – a system for learning from examples based on rough sets. In: Słowiński, R. (ed.) Intelligent Decision Support: Handbook of Advances and Applications of the Rough Sets Theory, pp. 3–18. Kluwer, Dordrecht (1992)

    Google Scholar 

  21. Grzymała-Busse, J.W., Hu, M.: A comparison of several approaches to missing attribute values in data mining. In: Ziarko, W.P., Yao, Y. (eds.) RSCTC 2000. LNCS (LNAI), vol. 2005, pp. 378–385. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  22. Hempel, C.G.: Aspects of Scientific Explanation. The Free Press, New York (1965)

    Google Scholar 

  23. Yu, H., Wang, G., Lan, F.: Solving the Attribute Reduction Problem with Ant Colony Optimization. In: Peters, J.F., Skowron, A., Chan, C.-C., Grzymala-Busse, J.W., Ziarko, W.P. (eds.) Transactions on Rough Sets XIII. LNCS, vol. 6499, pp. 240–259. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  24. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor (1975)

    Google Scholar 

  25. Höhle, U.: Quotients with respect to similarity relations. Fuzzy Sets and Systems 27, 31–44 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kloesgen, W., Zytkow, J. (eds.): Handbook of Data Mining and Knowledge Discovery. Oxford University Press, Oxford (2002)

    MATH  Google Scholar 

  27. Kryszkiewicz, M., Rybiński, H.: Data mining in incomplete information systems from rough set perspective. In: Polkowski, L., Tsumoto, S., Lin, T.Y. (eds.) Rough Set methods and Applications. New Developments in Knowledge Discovery in Information Systems, pp. 567–580. Physica Verlag, Heidelberg (2000)

    Google Scholar 

  28. Leibniz, G.W.: Discourse on Metaphysics. In: Loemker, L. (ed.) Philosophical Papers and Letters, 2nd edn., D. Reidel, Dordrecht (1969); The Identity of Indiscernibles. In: Stanford Encyclopedia of Philosophy, http://plato.stanford.edu/entries/identity-indiscernible/ (last entered 01.04.2011)

    Google Scholar 

  29. Ling, C.–H.: Representation of associative functions. Publ. Math. Debrecen 12, 189–212 (1965)

    MathSciNet  Google Scholar 

  30. Łukasiewicz, J.: W sprawie odwracalności stosunku racji i nastȩpstwa (Concerning the invertibility of the relation between the premise and the conclusion (in Polish)). Przegla̧d Filozoficzny 16 (1913)

    Google Scholar 

  31. Makinson, D.: General patterns in non–monotonic reasoning. In: Gabbay, D.M., Hogger, C.J., Robinson, J.A. (eds.) Handbook of Logic in Artificial Intelligence and Logic Programming 3. Non–monotonic and Uncertain Reasoning, vol. 2, pp. 35–110. Oxford University Press, Oxford (1994)

    Google Scholar 

  32. de Mántaras, L., Valverde, L.: New results in fuzzy clustering based on the concept of indistinguishability relation. IEEE Trans. on Pattern Analysis and Machine Intelligence 10, 754–757 (1988)

    Article  MATH  Google Scholar 

  33. Menger, K.: Statistical metrics. Proc. Nat. Acad. Sci. USA 28, 535–537 (1942)

    Article  MathSciNet  MATH  Google Scholar 

  34. Menger, K.: Ensembles flous et fonctions alétoires. C. R. Académie des Sciences 37, 2001–2003 (1951)

    Google Scholar 

  35. Menu, J., Pavelka, J.: A note on tensor products on the unit interval. Comm. Univ. Carolinae 17, 71–83 (1976)

    MathSciNet  MATH  Google Scholar 

  36. Michalski, R.S., Mozetic, I., Hong, J., Lavrac, N.: The multi–purpose incremental learning system AQ15 and its testing to three medical domains. In: Proceedings of AAAI 1986, pp. 1041–1045. Morgan Kaufmann, San Mateo (1986)

    Google Scholar 

  37. Mitchell, T.: Machine Learning. McGraw-Hill, Englewood Cliffs (1997)

    MATH  Google Scholar 

  38. Moshkov, M., Skowron, A., Suraj, Z.: Irreducible descriptive sets of attributes for information systems. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets XI. LNCS, vol. 5946, pp. 92–105. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  39. Mostert, P.S., Shields, A.L.: On the structure of semigroups on a compact manifold with boundary. Ann. Math. 65, 117–143 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  40. Muggleton, S.H.: Inductive Logic Programming. Academic Press, New York (1992)

    MATH  Google Scholar 

  41. Novotny, M., Pawlak, Z.: Partial dependency of attributes. Bull. Pol. Ac.: Math. 36, 453–458 (1988)

    MathSciNet  MATH  Google Scholar 

  42. Orłowska, E.: Modal logics in the theory of information systems. Z. Math. Logik u. Grund. d. Math. 30, 213–222 (1984)

    Article  MATH  Google Scholar 

  43. Orłowska, E.: Logic for reasoning about knowledge. Z. Math. Logik u. Grund. d. Math. 35, 559–572 (1989)

    Article  MATH  Google Scholar 

  44. Pawlak, Z.: Rough sets. International Journal of Computer and Information Sciences 11, 341–356 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  45. Pawlak, Z.: On rough dependency of attributes in information systems. Bull. Pol. Ac.: Tech. 33, 551–559 (1985)

    MathSciNet  MATH  Google Scholar 

  46. Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. Kluwer, Dordrecht (1991)

    MATH  Google Scholar 

  47. Pawlak, Z., Skowron, A.: A rough set approach for decision rules generation. In: Proceedings of IJCAI 1993 Workshop W12, Warsaw University of Technology, Institute of Computer Science (1993)

    Google Scholar 

  48. Polkowski, L.: On convergence of rough sets. In: Słowinski, R. (ed.) Intelligent Decision Support. Handbook of Applications and Advances of Rough Sets Theory, pp. 305–311. Kluwer, Dordrecht (1992)

    Google Scholar 

  49. Polkowski, L.: Mathematical morphology of rough sets. Bull. Pol. Ac.: Math. 41, 241–273 (1993)

    MathSciNet  MATH  Google Scholar 

  50. Polkowski, L.: Metric spaces of topological rough sets from countable knowledge bases. Foundations of Computing and Decision Sciences 18, 293–306 (1993)

    MathSciNet  MATH  Google Scholar 

  51. Polkowski, L.: Concerning mathematical morphology of almost rough sets. Bull. Pol. Ac.: Tech. 42, 141–152 (1994)

    MATH  Google Scholar 

  52. Polkowski, L.: Hit–or–Miss topology. In: Hazewinkel, M. (ed.) Encyclopedia of Mathematics. Supplement 1, p. 293. Kluwer, Dordrecht (1998)

    Google Scholar 

  53. Polkowski, L.: Approximation mathematical morphology. In: Pal, S.K., Skowron, A. (eds.) Rough Fuzzy Hybridization. A New Trend in Decision Making, pp. 151–162. Springer, Singapore (1999)

    Google Scholar 

  54. Polkowski, L.: Rough Sets. Mathematical Foundations. Physica Verlag, Heidelberg (2002)

    MATH  Google Scholar 

  55. Popper, K.: The Logic of Scientific Discovery. Hutchinson, London (1959)

    MATH  Google Scholar 

  56. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kauffmann, San Mateo (1993)

    Google Scholar 

  57. Rasiowa, H., Skowron, A.: Rough concept logic. In: Skowron, A. (ed.) SCT 1984. LNCS, vol. 208, pp. 288–297. Springer, Heidelberg (1985)

    Google Scholar 

  58. Rissanen, J.: Universal coding, information, prediction and estimation. IEEE Transactions on Information Theory IT-30(4), 629–636 (1984)

    Article  MathSciNet  Google Scholar 

  59. RSES. A system for data analysis, http://logic.mimuw.edu.pl/~rses/ (last entered 01. 04. 2011)

  60. Ruspini, E.H.: On the semantics of fuzzy logic. Int. J. Approx. Reasoning 5, 45–88 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  61. Russell, S., Norvig, P.: Artificial Intelligence. A Modern Approach, 3rd edn. Prentice Hall, Upper Saddle River (2009)

    Google Scholar 

  62. Schweizer, B., Sklar, A.: Probabilistic Metric Spaces. North – Holland, Amsterdam (1983)

    MATH  Google Scholar 

  63. Scott, D.: Completeness and axiomatizability in many–valued logics. Proc. Symp. in Pure Math. 25, 431–435 (1974)

    Google Scholar 

  64. Seising, R.: Fuzziness before fuzzy sets: Two 20th century philosophical approaches to vagueness – Ludwik Fleck and Karl Menger. In: Proceedings IFSA 2005, Beijing, pp. 1499–1504 (2005)

    Google Scholar 

  65. Skowron, A.: Boolean reasoning for decision rules generation. In: Komorowski, J., Raś, Z.W. (eds.) ISMIS 1993. LNCS, vol. 689, pp. 295–305. Springer, Heidelberg (1993)

    Google Scholar 

  66. Skowron, A., Rauszer, C.: The discernibility matrices and functions in decision systems. In: Słowiński, R. (ed.) Intelligent Decision Support. Handbook of Applications and Advances of the Rough Sets Theory, pp. 311–362. Kluwer, Dordrecht (1992)

    Google Scholar 

  67. Vakarelov, D.: Modal logics for knowledge representation systems. In: Meyer, A.R., Taitslin, M.A. (eds.) Logic at Botik 1989. LNCS, vol. 363, pp. 257–277. Springer, Heidelberg (1989)

    Google Scholar 

  68. Valverde, L.: On the structure of F – indistinguishability operators. Fuzzy Sets and Systems 17, 313–328 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  69. Vapnik, V.N.: Statistical Learning Theory. John Wiley and Sons, New York (1998)

    MATH  Google Scholar 

  70. Zadeh, L.A.: Fuzzy sets. Information and Control 8, 338–353 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  71. Zadeh, L.A.: Similarity relations and fuzzy orderings. Information Sciences 3, 177–200 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  72. Zadeh, L.A.: Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans. Syst. Man and Cybern. 1, 28–44 (1973)

    Article  MathSciNet  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Polkowski, L. (2011). Reductive Reasoning Rough and Fuzzy Sets as Frameworks for Reductive Reasoning. In: Approximate Reasoning by Parts. Intelligent Systems Reference Library, vol 20. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22279-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22279-5_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22278-8

  • Online ISBN: 978-3-642-22279-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics