Skip to main content

Part of the book series: Engineering Materials ((ENG.MAT.,volume 0))

Abstract

a-Si:H/c-Si heterojunction solar cells require different contacting schemes as compared to conventional solar cells with diffused emitters due to the low emitter conductivity. Apart from back-contacted solar cells it is common to use a transparent conducting oxide (TCO) instead of silicon nitride as an anti-reflection (AR) layer. The choice of materials is vast, with materials based on indium oxide and zinc oxide being the most prominent choice. The optical and electrical properties of these films both play a significant role for the solar cell but they are strongly related, meaning that one cannot optimize them independently. Too high carrier concentrations for instance lead to a lower refractive index of the TCO even for light with a wavelength well below 1100 nm, which results in a worsened AR effect. It is therefore advantageous to use materials with moderate carrier concentrations. The challenges for the deposition of these materials are mainly the low thickness required for an optimum AR effect, for which properties are still influenced by inferior film growth during the nucleation phase, and the allowed substrate temperature of around 200 °C which is limited by the thermal stability of the a-Si:H/c-Si interface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stangl, R., Haschke, J., Bivour, M., Korte, L., Schmidt, M., Lips, K., Rech, B.: Planar rear emitter back contact silicon heterojunction solar cells. Sol. Energ. Mater. Sol. Cell 93, 1900–1903 (2009)

    Article  CAS  Google Scholar 

  2. Tucci, M., Serenelli, L., Salza, E., De Iuliis, S., Geerligs, L.J., Caputo, D., Ceccarelli, M., de Cesare, G.: Back contacted a-Si:H/c-Si heterostructure solar cells. J. Non-Cryst. Solids 354, 2386–2391 (2008)

    Article  CAS  Google Scholar 

  3. Zhao, L., Zhou, Z., Peng, H., Cui, R.: Indium tin oxide thin films by bias magnetron rf sput-tering for heterojunction solar cells application. Appl. Surf. Sci. 252, 385–392 (2005)

    Article  CAS  Google Scholar 

  4. Dao, V.A., Choi, H., Heo, J., Park, H., Yoon, K., Lee, Y., Kim, Y., Lakshminarayan, N., Yi, J.: rf-Magnetron sputtered ITO thin films for improved heterojunction solar cell applications. Curr. Appl. Phys. 10, S506–S509 (2010)

    Google Scholar 

  5. Zunger, A.: Practical doping principles. Appl. Phys. Lett. 83(1), 57–59 (2003)

    Article  CAS  Google Scholar 

  6. Chopra, K.L., Major, S., Pandya, D.K.: Transparent conductors – a status review. Thin Solid Films 102, 1–46 (1983)

    Article  CAS  Google Scholar 

  7. Ginley, D.S., Bright, C.: Transparent conducting oxides. MRS Bulletin 25(8) (2000)

    Google Scholar 

  8. Exarhos, G.J., Zhou, X.-D.: Discovery-based design of transparent conducting oxide films. Thin Solid Films 515, 7025–7052 (2007)

    Article  CAS  Google Scholar 

  9. Ellmer, K., Klein, A., Rech, B.: Transparent Conductive Zinc Oxide. Springer, Heidelberg (2008)

    Book  Google Scholar 

  10. Pearton, S.J., Norton, D.P., Ip, K., Heo, Y.W., Steiner, T.: Recent advances in process-ing of ZnO. J. Vac. Sci. Technol. B 22(3), 932–948 (2004)

    Article  CAS  Google Scholar 

  11. Ellmer, K., Mientus, R.: Carreir transport in polycrystalline transparent conducting ox-ides: A comparative study of zinc oxide and indium oxide. Thin Solid Films 516, 4620–4627 (2008)

    Article  CAS  Google Scholar 

  12. Ellmer, K.: Resistivity of polycrystalline zinc oxide films. Current status and physical limit. J. Phys. D: Appl. Phys. 34, 3097–3108 (2001)

    Article  CAS  Google Scholar 

  13. Özgür, Ü., Alivov, Y.I., Liu, C., Teke, A., Reshchikov, M.A., Doğan, S., Avrutin, V., Cho, S.-J., Morkoç, H.: A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 041301 (2005)

    Article  Google Scholar 

  14. Ito, K., Nakazawa, T.: Transparent and Highly Conductive Films of ZnO Prepared by RF Sputtering. Jap. J. Appl. Phys. 22(4), L245–L247 (1983)

    Google Scholar 

  15. Nanto, H., Minami, T., Shooji, S., Takata, S.: Electrical and optical properties of zinc oxide thin films prepared by RF magnetron sputtering for transparent electrode applications. J. Appl. Phys. 55(4), 1029–1034 (1984)

    Article  CAS  Google Scholar 

  16. Minami, T., Nanto, H., Shooji, S., Takata, S.: The Stability of Zinc Oxide Transparent Electrodes Fabricated by R. F. Magnetron Sputtering. Thin Solid Films 111, 167–174 (1984)

    Article  CAS  Google Scholar 

  17. Minami, T., Nanto, H., Takata, S.: Highly Conductive and Transparent Aluminum Doped Zinc Oxide Thin Films Prepared by RF Magnetron Sputtering. Jap. J. Appl. Phys. 35(5), L280–L282 (1984)

    Google Scholar 

  18. Bellingham, J.R., Phillips, W.A., Adkins, C.J.: Electrical and optical properties of amorphous indium oxide. J. Phys.: Condens. Matter 2, 6207–6221 (1990)

    Article  CAS  Google Scholar 

  19. Lee, B.H., Kim, I.G., Cho, S.W., Lee, S.-H.: Effect of process parameters on the char-acteristics of indium tin oxide thin film for flat panel display application. Thin Solid Films 302, 25–30 (1997)

    Article  CAS  Google Scholar 

  20. Shigesato, Y., Hayashi, Y., Haranoh, T.: Doping mechanisms of tin-doped indium ox-ide films. Appl. Phys. Lett. 61(1), 73–75 (1992)

    Article  CAS  Google Scholar 

  21. Shigesato, Y., Paine, D.C.: Study of the effect of Sn doping on the electronic transport properties of thin film indium oxide. Appl. Phys. Lett. 62(11), 1268–1270 (1993)

    Article  CAS  Google Scholar 

  22. Mizuhashi, M.: Electrical properties of vacuum-deposited indium oxide and indium tin oxide films. Thin Solid Films 70, 91–100 (1980)

    Article  CAS  Google Scholar 

  23. Minami, T., Miyata, T., Yamamoto, T.: Stability of transparent conducting oxide films for use at high temperatures. J. Vac. Sci. Technol. A 17(4), 1822–1826 (1999)

    Article  CAS  Google Scholar 

  24. Granqvist, C.G., Hultåker, A.: Transparent and conducting ITO films: new develop-ments and applications. Thin Solid Films 411, 1–5 (2002)

    Article  CAS  Google Scholar 

  25. Minami, T.: Transparent conducting oxide semiconductors for transparent electrodes. Semicond. Sci. Technol. 20, S35–S44 (2005)

    Article  Google Scholar 

  26. Koida, T., Kondo, M., Tsutsumi, K., Sakaguchi, A., Suzuki, M., Fujiwara, H.: Hydrogen-doped In2O3 transparent conducting oxide films prepared by solid-phase crystallization method. J. Appl. Phys. 107, 033514 (2010)

    Article  Google Scholar 

  27. Calnan, S., Tiwari, A.N.: High mobility transparent conducting oxides for thin film so-lar cells. Thin Solid Films 518, 1839–1849 (2010)

    Article  CAS  Google Scholar 

  28. Agura, H., Suzuki, A., Matsushita, T., Aoki, T., Okuda, M.: Low resistivity transpar-ent conducting Al-doped ZnO films prepared by pulsed laser deposition. Thin Solid Films 445, 263–267 (2003)

    Article  CAS  Google Scholar 

  29. Assunção, V., Fortunato, E., Marques, A., Gonçalves, A., Ferreira, I., Águas, H., Martins, R.: New challanges on gallium-doped zinc oxide films prepared by r.f. magnetron sputtering. Thin Solid Films 442, 102–106 (2003)

    Article  Google Scholar 

  30. Fortunato, E., Assunção, V., Gonçalves, A., Marques, A., Águas, H., Pereira, L., Ferreira, I., Vilarinho, P., Martins, R.: High quality conductive gallium-doped zinc oxide films deposited at room temperature. Thin Solid Films 451-452, 443–447 (2004)

    Google Scholar 

  31. Faÿ, S., Shah, A.: Zinc Oxide Grown by CVD Process as Transparent Contact for Thin Film Solar Cell Applications. In: Ellmer, K., Klein, A., Rech, B. (eds.) Transparent Conductive Zinc Oxide. Springer, Heidelberg (2008)

    Google Scholar 

  32. Stjerna, B., Olsson, E., Granqvist, C.G.: Optical and electrical properties of radio fre-quency sputtered tin oxide films doped with oxygen vacancies, F, Sb, or Mo. J. Appl. Phys. 76(6), 3797–3817 (1994)

    Article  CAS  Google Scholar 

  33. Pisarkiewicz, T., Zakrzewska, K., Leja, E.: Scattering of charge carriers in trans-parent and conducting thin oxide films with a non-parabolic conduction band. Thin Solid Films 174, 217–223 (1989)

    Article  CAS  Google Scholar 

  34. Young, D.L., Coutts, T.J., Kaydanov, V.I., Gilmore, A.S., Mulligan, W.P.: Direct measurement of density-of-states effective mass and scattering parameter in transparent con-ducting oxides using second-order transport phenomena. J. Vac. Sci. Technol. A 18(6), 2978–2985 (2000)

    Article  CAS  Google Scholar 

  35. Ruske, F., Pflug, A., Sittinger, V., Szyszka, B., Greiner, D., Rech, B.: Optical model-ing of free electron behavior in highly doped ZnO films. Thin Solid Films 518, 1289–1293 (2009)

    Article  CAS  Google Scholar 

  36. Look, D.C., Leedy, K.D., Tomich, D.H., Bayraktaroglu, B.: Mobility analysis of highly conducting thin films: Application to ZnO. Appl. Phys. Lett. 96, 062102 (2010)

    Article  Google Scholar 

  37. Chen, M., Pei, Z.L., Wang, X., Yu, Y.H., Liu, X.H., Sun, C., Wen, L.S.: Intrinsic limit of electrical properties of transparent conductive oxide films. J. Phys. D: Appl. Phys. 33, 2538–2548 (2000)

    Article  CAS  Google Scholar 

  38. Seto, J.Y.W.: Electrical Properties of Polycrystalline Silicon Films. J. Appl. Phys. 46(12), 5247–5254 (1975)

    Article  CAS  Google Scholar 

  39. Edwards, P.P., Porch, A., Jones, M.O., Morgan, D.V., Perks, R.M.: Basic materials physics of transparent conducting oxides. Dalton Trans. 19, 2995–3002 (2004)

    Article  Google Scholar 

  40. Ruske, F., Roczen, M., Lee, K., Wimmer, M., Gall, S., Hüpkes, J., Hrunski, D., Rech, B.: Improved electrical transport in Al-doped zinc oxide by thermal treatment. J. Appl. Phys. 107, 013708 (2010)

    Article  Google Scholar 

  41. Utsumi, K., Iigusa, H., Tokumaru, R., Song, P.K., Shigesato, Y.: Study on In2O3-SnO2 transparent and conductive films prepared by d.c. sputtering using high density ceramic targets. Thin Solid Films 445, 229–234 (2003)

    Article  CAS  Google Scholar 

  42. Leenheer, A.J., Perkins, J.D., van Hest, M.F.A.M., Berry, J.J., O’Hayre, R.P., Ginley, D.S.: General mobility and carrier concentration relationship in transparent amorphous in-dium zinc oxide. Phys. Rev. B 77, 115215 (2008)

    Article  Google Scholar 

  43. Tominaga, K., Takada, D., Shimomura, K., Suketa, H., Takita, K., Murai, K., Moriga, T.: Influence of Ga2O3 addition on transparent conductive oxide films of In2O3-ZnO. Vacuum 83, 561–563 (2009)

    Article  Google Scholar 

  44. Martins, R., Barquinha, P., Pimentel, A., Pereira, L., Fortunato, E.: Transport in high mobility amorphous wide gap indium zinc oxide films. Phys. Stat. Sol. (a) 202(9), R95–R97 (2005)

    Google Scholar 

  45. Kanevce, A., Metzger, W.K.: The role of amorphous silicon and tunneling in hetero-junction with intrinsic thin layer (HIT) solar cells. J. Appl. Phys. 105, 094507 (2009)

    Article  Google Scholar 

  46. Rahmouni, M., Datta, A., Chatterjee, P., Damon-Lacoste, J., Ballif, C., Roca i Cabarrocas, P.: Carrier transport and sensitivity issues in heterojunction with intrinsic thin layer solar cells on N-type crystalline silicon: A computer simulation study. J. Appl. Phys. 107, 054521 (2010)

    Article  Google Scholar 

  47. Zhao, L., Zhou, C.L., Li, H.L., Diao, H.W., Wang, W.J.: Role of the work function of transparent conductive oxide on the performance of amorphous/crystalline silicon heterojunction solar cells studied by computer simulation. Phys. Stat. Sol. (a) 205, 1215–1221 (2008)

    Article  CAS  Google Scholar 

  48. Vinh Ai Dao, V.A., Heo, J., Choi, H., Kim, Y., Park, S., Jung, S., Lakshminarayan, N., Yi, J.: Simulation and study of the influence of the buffer intrinsic layer, back-surface field, densities of interface defects, resistivity of p-type silicon substrate and transparent conductive oxide on heterojunction with intrinsic thin-layer (HIT) solar cell. Sol. En. 84, 777–783 (2010)

    Article  Google Scholar 

  49. Sato, Y., Ashida, T., Oka, N., Shigesato, Y.: Carrier Density Dependence of Optical Band Gap and Work Function in Sn-Doped In2O3 Films. Appl. Phys. Express 3, 061101 (2010)

    Article  Google Scholar 

  50. Minami, T., Miyata, T., Yamamoto, T.: Work function of transparent conducting mul-ticomponent oxide thin films prepared by magnetron sputtering. Surf. Coat. Technol. 108-109, 583–587 (1998)

    Google Scholar 

  51. Hamberg, I., Granqvist, C.G., Berggren, K.F., Sernelius, B.E., Engström, L.: Band-gap widening in heavily Sn-doped I2O3. Phys. Rev. B 30, 3240–3249 (1984)

    Article  CAS  Google Scholar 

  52. Sernelius, B.E., Berggren, K.F., Jin, Z.C., Hamberg, I., Granqvist, C.G.: Band-Gap Tailoring of Zno by Means of Heavy Al Doping. Phys. Rev. B 37, 10244–10248 (1988)

    Article  CAS  Google Scholar 

  53. Sans, J.A., Segura, A., Sánchez-Royo, J.F., Barber, V., Hernández-Fenollosa, M.A., Marí, B.: Correlation between optical and transport properties of Ga-doped ZnO thin films prepared by pulsed laser deposition. Superlattices and Microstructures 39, 282–290 (2006)

    Article  CAS  Google Scholar 

  54. Sans, J.A., Sánchez-Royo, J.F., Segura, A., Tobias, G., Canadell, E.: Chemical effects on the optical band-gap of heavily doped ZnO:MIII (M=Al,Ga, In): An investigation by means of photoelectron spectroscopy, optical measurements under pressure, and band structure cal-culations. Phys. Rev. B 79, 195105 (2009)

    Article  Google Scholar 

  55. Losurdo, M., Gaingregorio, M., Capezzuto, P., Bruno, G., De Rosa, R., Roca, F., Summonte, C., Plá, J., Rizzoli, R.: Parametrization of optical properties of indium-tin-oxide thin films by spectroscopic ellipsommetry: Substrate interface reactivity. J. Va. Sci. Technol. A 20(1), 37–42 (2002)

    Article  CAS  Google Scholar 

  56. Fujiwara, H., Kondo, M.: Effects of carrier concentration on the dielectric function of ZnO:Ga and In2O3:Sn studied by spectroscopic ellipsometry: Analysis of free-carrier and band-edge absorption. Phys. Rev. B 71, 75109 (2005)

    Article  Google Scholar 

  57. Pflug, A., Sittinger, V., Ruske, F., Szyszka, B., Dittmar, G.: Optical characterization of aluminium-doped zinc oxide films by advanced dispersion theories. Thin Solid Films 455-456, 201–206 (2004)

    Article  CAS  Google Scholar 

  58. Volintiru, I., Creatore, M., van de Sanden, M.C.M.: In situ spectroscopic ellipsometry growth studies on the Al-doped ZnO films deposited by remote plasma-enhanced metalor-ganic chemical vapour deposition. J. Appl. Phys. 103, 033704 (2008)

    Article  Google Scholar 

  59. Jin, Z.-C., Hamberg, I., Granqvist, C.G.: Optical properties of sputter-deposited ZnO:Al thin films. J. Appl. Phys. 64(10), 5117–5131 (1988)

    Article  CAS  Google Scholar 

  60. Hamberg, I., Granqvist, C.G.: Evaporated Sn-doped In2O3 films: Basic optical properties and applications to energy-efficient windows. J. Appl. Phys. 60(11), R123–R159 (1986)

    Google Scholar 

  61. Mergel, D., Qiao, Z.: Dielectric modelling of optical spectra of thin In2O3:Sn films. J. Phys. D: Appl. Phys. 35, 794–801 (2002)

    Article  CAS  Google Scholar 

  62. Baker-Finch, S.C., McIntosh, K.R.: Reflection of normally incident light from silicon solar cells with pyramidal texture. Prog. Photovolt: Res. Appl. (2010)

    Google Scholar 

  63. Taira, S., Yoshimine, Y., Baba, T., Taguchi, M., Kanno, H., Kinoshita, T., Sakata, H., Maruyama, E., Tanaka, M.: Our approach for achieving HOT solar cells with more than 23 % efficiency. In: 22nd European Photovoltaic Solar Energy Conference, Milan, Italy, September 3-7, pp. 932–935 (2007)

    Google Scholar 

  64. Wright, D.N., Ulyashin, A., Bentzen, A., Marstein, E.S., Holt, A.: Multi-layer TCO based anti-reflective coatings for silicon solar cells. In: 21st EUPVSEC, Dresden, Germany, September 4-8, pp. 1211–1214 (2006)

    Google Scholar 

  65. Aé, L., Kieven, D., Chen, J., Klenk, R., Rissom, T., Tang, Y., Lux-Steiner, M.C.: ZnO nanorod arrays as an antireflective coating for Cu(In,Ga)Se2 thin film solar cells. Prog. Photovolt.: Res. Appl. 18, 209–213 (2010)

    Article  Google Scholar 

  66. Schuler, T., Aegerter, M.A.: Optical, electrical and structural properties of sol gel ZnO:Al coatings. Thin Solid Films 351, 125–131 (1999)

    Article  CAS  Google Scholar 

  67. Volintiru, I., Creatore, M., Kniknie, B.J., Spee, C.I.M.A., van de Sanden, M.C.M.: Evolution of the electrical and structural properties during the growth of Al doped ZnO films by remote plasma-enhanced metalorganic chemical vapor deposition. J. Appl. Phys. 102, 043709 (2007)

    Article  Google Scholar 

  68. Faÿ, S., Kroll, U., Bucher, C., Vallat-Sauvain, E., Shah, A.: Low pressure chemical vapour deposition of ZnO layers for thin-film solar cells: temperature-induced morphological changes. Sol. Energy Mater. Sol. Cells 86, 385–397 (2005)

    Article  Google Scholar 

  69. Garcia, P.F., McLean, R.S., Groner, M.D., Dameron, A.A., George, S.M.: Gas diffusion ultrabarriers on polymer substrates using Al2O3 atomic layer deposition and SiN plasma-enhanced chemical vapor deposition. J. Appl. Phys. 106, 023533 (2009)

    Article  Google Scholar 

  70. Naghavi, N., Abou-Ras, D., Allsop, N., Barreau, N., Bücheler, S., Ennaoui, A., Fischer, C.-H., Guillen, C., Hariskos, D., Herrero, J., Klenk, R., Kushiya, K., Lincot, D., Menner, R., Nakada, T., Platzer-Björkman, C., Spiering, S., Tiwari, A.N., Törndahl, T.: Buffer layers and transparent conducting oxides for chalcopyrite Cu(In,Ga)(S,Se)2 based thin film photovoltaics: present status and current developments. Prog. Photovolt.: Res. Appl. 18, 411–433 (2010)

    Article  CAS  Google Scholar 

  71. Banerjee, P., Lee, W.-J., Bae, K.-R., Lee, S.B., Rubloff, G.W.: Structural, electrical, and optical properties of atomic layer deposition Al-doped ZnO films. J. Appl. Phys. 108, 043504 (2010)

    Article  Google Scholar 

  72. An, K.-S., Cho, W., Lee, B.K., Lee, S.S., Kim, C.G.: Atomic Layer Deposition of Un-doped an Al-Doped ZnO Thin Films Using the Zn Alkoxide Precursor Methylzinc Isopropoxide. J. Nanosci. Nanotechnol. 8, 4856–4859 (2008)

    Article  CAS  Google Scholar 

  73. Suzuki, A., Matsushita, T., Aoki, T., Yoneyama, Y., Okuda, M.: Pulsed Laser Deposi-tion of Transparent Conducting Indium Tin Oxide Films in Magnetic Field Perpendicular to Plume. Jpn. J. Appl. Phys. 40, L401–L403 (2001)

    Google Scholar 

  74. Suzuki, A., Nakamura, M., Michihata, R., Aoki, T., Matsushita, T., Okuda, M.: Ultra-thin Al-doped transparent conducting zinc oxide films fabricated by pulsed laser deposition. Thin Solid Films 517, 1478–1481 (2008)

    Article  CAS  Google Scholar 

  75. Dong, B.-Z., Fang, G.-J., Wang, J.-F., Guan, W.-J., Zhao, X.-Z.: Effect of thickness on structural, electrical, and optical properties of ZnO:Al films deposited by pulsed laser deposition. J. Appl. Phys. 101, 033713 (2007)

    Article  Google Scholar 

  76. Kim, H., Horwitz, J.S., Kushto, G., Piqué, A., Kafafi, Z.H., Gilmore, C.M., Chrisey, D.B.: Effect of film thickness on the properties of indium tin oxide thin films. J. Appl. Phys. 88(10), 6021–6025 (2000)

    Article  CAS  Google Scholar 

  77. Tsuji, N., Komiyama, H., Tanaka, K.: Growth Mechanism of ZnO Film by Reactive Sputtering Method – Significance of Thermodynamics in a Plasma System. Jpn. J. Appl. Phys. 29(5), 835–841 (1990)

    Article  CAS  Google Scholar 

  78. Kon, M., Song, P.K., Shigesato, Y., Frach, P., Ohno, S., Suzuki, K.: Impedance control of reactive sputtering process in mid-frequency mode with dual cathodes to deposit Al-doped ZnO films. Jpn. J. Appl. Phys. 42, 263–269 (2003)

    Article  CAS  Google Scholar 

  79. Ruske, F.: Magnetronsputtern von hochleitfähigen ZnO:Al-Schichten für die Photovoltaik. PhD Thesis, Fraunhofer IST, Braunschweig and Justus-Liebig-Universität Gießen, Fraunhofer IRB Verlag (2009)

    Google Scholar 

  80. Minami, T., Sato, H., Imamoto, H., Takata, S.: Substrate temperature dependence of transparent conducting Al-doped ZnO thin films prepared by magnetron sputtering. Jpn. J. Appl. Phys. 31, L257–L260 (1992)

    Google Scholar 

  81. Minami, T., Sato, H., Sonoda, T., Nanto, H., Takata, S.: Influence of Substrate and Target Temperatures on Properties of Transparent and Conductive Doped ZnO Thin Films Prepared by RF Magnetron Sputtering. Thin Solid Films 171, 307–311 (1989)

    Article  CAS  Google Scholar 

  82. Park, K.C., Ma, D.Y., Kim, K.H.: The physical properties of Al-doped zinc oxide films prepared by RF magnetron sputtering. Thin Solid Films 305, 201–209 (1997)

    Article  CAS  Google Scholar 

  83. Berginski, M., Hüpkes, J., Reetz, W., Rech, B., Wuttig, M.: Recent development on surface-textured ZnO:Al films prepared by sputtering for thin-film solar cell application. Thin Solid Films 516, 5836–5841 (2008)

    Article  CAS  Google Scholar 

  84. Ellmer, K.: Magnetron sputtering of transparent conductive zinc oxide: relation between the sputtering parameters and the electronic properties. J. Phys. D: Appl. Phys. 33 , R17–R32 (2000)

    Google Scholar 

  85. Lee, B.H., Kim, I.G., Cho, S.W., Lee, S.-H.: Effect of process parameters on the char-acteristics of indium tin oxide thin film for flat panel display application. Thin Solid Films 302, 25–30 (1997)

    Article  CAS  Google Scholar 

  86. Koida, T., Kondo, M., Tsutsumi, K., Sakaguchi, A., Suzuki, M., Fujiwara, H.: Hydrogen-doped In2O3 transparent conducting oxide films prepared by solid-phase crystallization method. J. Appl. Phys. 107, 033514 (2010)

    Article  Google Scholar 

  87. Koida, T., Fujiwara, H., Kondo, M.: High-mobility hydrogen-doped In2O3 transparent-conductive oxide for a-Si:H/c-Si hetero junction solar cells. Sol. Energ. Mater. Sol. Cell 93, 851–854 (2009)

    Article  CAS  Google Scholar 

  88. Kim, D.-H., Park, M.-R., Lee, H.-J., Lee, G.-H.: Thickness dependence of electrical properties of ITO film deposited on a plastic substrate by RF magnetron sputtering. Appl. Surf. Sci. 253, 409–411 (2006)

    Article  CAS  Google Scholar 

  89. Gao, M.-Z., Job, R., Xue, D.-S., Fahrner, W.R.: Thickness Dependence of Resistivity and Optical Reflectance of ITO Films. Chin. Phys. Lett. 25, 1380–1383 (2008)

    Article  CAS  Google Scholar 

  90. Rößler, R., Muske, M.: Unpublished results from Helmholtz-Zentrum, Berlin (2010)

    Google Scholar 

  91. Fenske, F., Brehme, S., Henrion, W., Schmidt, M.: Al-dotierte ZnO-Schichten für a-Si/c-Si Solarzellen. TCO für Dünnschichtsolarzellen II, Jülich, FVS (2002), http://www.fvee.de/fileadmin/publikationen/Workshopbaende/ws2002/ws2002_01_03.pdf (accessed November 15, 2010)

  92. Minami, T., Miyata, T., Honma, Y., Ito, T.: Effect of spatial relationship between arc plasma and substrate on the properties of transparent conducting Ga-doped ZnO thin films prepared by vacuum arc plasma evaporation. Thin Solid Films 517, 6824–6828 (2009)

    Article  CAS  Google Scholar 

  93. Qu, Y., Gessert, T.A., Ramanathan, K., Dhere, R.G., Noufi, R., Coutts, T.J.: Electrical and optical properties of ion beam sputtered ZnO:Al films as a function of film thickness. J. Vac. Sci. Technol. A 11, 996–1000 (1993)

    Article  CAS  Google Scholar 

  94. Yamada, T., Miyake, A., Kishimoto, S., Makino, H., Yamamoto, N., Yamamoto, T.: Low resistivity Ga-doped ZnO thin films of less than 100 nm thickness prepared by ion plating with direct current arc discharge. Appl. Phys. Lett. 91, 051915 (2007)

    Article  Google Scholar 

  95. Gupta, R.K., Ghosh, K., Patel, R., Kahol, P.K.: Effect of thickness on optoelectrical properties of Mo-doped indium oxide films. Appl. Surf. Sci. 255, 3046–3048 (2008)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ruske, F. (2012). Deposition and Properties of TCOs. In: van Sark, W.G.J.H.M., Korte, L., Roca, F. (eds) Physics and Technology of Amorphous-Crystalline Heterostructure Silicon Solar Cells. Engineering Materials, vol 0. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22275-7_9

Download citation

Publish with us

Policies and ethics