Skip to main content

Part of the book series: Engineering Materials ((ENG.MAT.,volume 0))

Abstract

The performance of crystalline silicon (c-Si) heterojunction (SHJ) solar cells critically depends on the properties of the deposited hydrogenated amorphous silicon (a-Si:H) films. Surface passivation is an important role they need to fulfill. Additionally, the a-Si:H films should also act as efficient emitter and back surface field (BSF). In this chapter, we focus on the electronic passivation properties of thea-Si:H/c-Si interface. First, relevant literature on c-Si surfaces is briefly reviewed, including the effect of hydrogenation of surface states. This is followed by a discussion of how electronic surface recombination is calculated and measured. Recombination is mainly determined by electronic gap-states. The precise nature of these states is discussed both for the c-Si surface and for the a-Si:H bulk. Next, the physical passivation mechanism of intrinsic a-Si:H is elucidated. It is concluded that it stems from chemical surface state passivation by hydrogen, similar to defect passivation in the a-Si:H bulk. For these films, it is also argued how epitaxial growth may detrimentally influence the passivation quality. For heterojunction devices this has its importance, as the deposition of device-grade a-Si:H is often very close to the transition to epitaxial growth. A following section focuses on the effect of doping of the amorphous films. Doping is principally expected to improve the passivation quality further, as it should give rise to additional field-effect passivation. Here, it is discussed why this is not necessarily the case, as doping is also linked to Fermi-level dependent Si–H bond rupture in the films. A compromise between doping and surface-passivation may be obtained by employing an intrinsic buffer layer between the doped film and the wafer. By using intrinsic buffer layers, values for the energy conversion efficiency as high as 23% were reported to date for SHJ devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sandroff, C.J., Nottenburg, R.N., Bischoff, J.C., Bhat, R.: Dramatic enhancement in the gain of a GaAs/AlGaAs heterostructure bipolar transistor by surface chemical passivation. Appl. Phys. Lett. 51, 33 (1987)

    Article  CAS  Google Scholar 

  2. Green, B.M., Chu, K.K., Chumbes, E.M., Smart, J.A., Shearly, J.R., Eastman, L.F.: The effect of surface passivation on the microwave characteristics of undoped AlGaN/GaN HEMTs. IEEE Electron. Dev. Lett. 21, 268 (2000)

    Article  CAS  Google Scholar 

  3. Vetury, R., Zhang, N.Q.Q., Keller, S., Mishra, U.K.: The impact of surface states on the DC and RF characteristics of AlGaN/GaN HFETs. IEEE Trans. Electron. Dev. 48, 560 (2001)

    Article  CAS  Google Scholar 

  4. Chui, C.O., Ramanathan, S., Triplett, B.B., McIntyre, P.C., Saraswat, K.C.: Germanium MOS capacitors incorporating ultrathin high-κ gate dielectric. IEEE Electron. Dev. Lett. 23, 473 (2002)

    Article  CAS  Google Scholar 

  5. Lauhon, L.J., Gudiksen, M.S., Wang, D., Lieber, C.M.: Epitaxial core–shell and core–multishell nanowire heterostructures. Nature 420, 57 (2002)

    Article  CAS  Google Scholar 

  6. Sinton, R.A., Kwark, Y., Gan, J.Y., Swanson, R.M.: 27.5-percent silicon concentrator solar cells. IEEE Electron. Dev. Lett. 7, 567 (1986)

    Article  Google Scholar 

  7. Zhao, J.H., Wang, A.H., Green, M.A.: 24.5% efficiency silicon PERT cells on MCZ sub-strates and 24.7% efficiency PERL cells on FZ substrates. Prog. Photovoltaics 7, 471 (1999)

    Article  CAS  Google Scholar 

  8. Taguchi, M., Kawamoto, K., Tsuge, S., Baba, T., Sakata, H., Morizane, M., Uchihashi, K., Nakamura, N., Kiyama, S., Oota, O.: HITTM cells – High-efficiency crystalline Si cells with novel structure. Prog. Photovoltaics 8, 503 (2000)

    Article  CAS  Google Scholar 

  9. Yablonovitch, E., Allara, D.L., Chang, C.C., Gmitter, T., Bright, T.B.: Unusually low surface-recombination velocity on silicon and germanium surfaces. Phys. Rev. Lett. 57, 249 (1986)

    Article  CAS  Google Scholar 

  10. Nicollian, E.H., Goetzberger, A.: The Si-Si02 interface electrical properties as determined by the MIS conductance technique. Bell Syst. Tech. J. 46, 1055 (1967)

    CAS  Google Scholar 

  11. Ghandhi, S.K.: VLSI fabrication principles. John Wiley & Sons, New York (1982)

    Google Scholar 

  12. Green, M.A.: The path to 25% silicon solar cell efficiency: History of silicon cell evolution. Prog. Photovoltaics 17, 183 (2009)

    Article  CAS  Google Scholar 

  13. Green, M.A., Zhao, J., Wang, A., Reece, P.J., Gal, M.: Efficient silicon light-emitting di-odes. Nature 412, 805 (2001)

    Article  CAS  Google Scholar 

  14. Swanson, R.M.: Photovoltaics power up. Science 324, 891 (2009)

    Article  CAS  Google Scholar 

  15. Kingon, A.I., Maria, J.P., Streiffer, S.K.: Alternative dielectrics to silicon dioxide for memory and logic devices. Nature 406, 1032 (2000)

    Article  CAS  Google Scholar 

  16. Aberle, A.G., Hezel, R.: Progress in low-temperature surface passivation of silicon solar cells using remote-plasma silicon nitride. Prog. Photovoltaics 5, 29 (1997)

    Article  CAS  Google Scholar 

  17. Deal, B.E., Grove, A.S.: General relationship for the thermal oxidation of silicon. J. Appl. Phys. 36, 3770 (1965)

    Article  CAS  Google Scholar 

  18. Schultz, O., Glunz, S.W., Willeke, G.P.: Multicrystalline silicon solar cells exceeding 20% efficiency. Prog. Photovoltaics 12, 553 (2004)

    Article  CAS  Google Scholar 

  19. Lanford, W.A., Rand, M.J.: The hydrogen content of plasma-deposited silicon nitride. J. Appl. Phys. 49, 2473 (1978)

    Article  CAS  Google Scholar 

  20. Lauinger, T., Schmidt, J., Aberle, A.G., Hezel, R.: Record low surface recombination velocities on 1 Ω.cm p-silicon using remote plasma silicon nitride passivation. Appl. Phys. Lett. 86, 1232 (1996)

    Article  Google Scholar 

  21. Chen, Z., Sana, P., Salami, J., Rohatgi, A.: A novel and effective PECVD SiO2/SiN antireflection coating for Si solar cells. IEEE Trans. Electron Devices 40, 1161 (1993)

    Article  CAS  Google Scholar 

  22. Hezel, R., Jaeger, K.: Low-temperature surface passivation of silicon for solar cells. J. Electrochem Soc. 136, 518 (1989)

    Article  CAS  Google Scholar 

  23. Agostinelli, G., Delabie, A., Vitanov, P., Alexieva, Z., Dekkers, H.F.W., De Wolf, S., Beaucarne, G.: Very low surface recombination velocities on p-type silicon wafers passivated with a dielectric with fixed negative charge. Sol. Energy Mater. Sol. Cells 90, 3438 (2006)

    Article  CAS  Google Scholar 

  24. Hoex, B., Heil, S.B.S., Langereis, E., van de Sanden, M.C.M., Kessels, W.M.M.: Ultralow surface recombination of c-Si substrates passivated by plasma-assisted atomic layer deposited Al2O3. Appl. Phys. Lett. 89, 042112 (2006)

    Article  CAS  Google Scholar 

  25. Yablonovitch, E., Gmitter, T., Swanson, R.M., Kwark, Y.H.: A 720 mV open circuit voltage SiOx:c-Si:SiOx double heterostructure solar cell. Appl. Phys. Lett. 47, 1211 (1986)

    Article  Google Scholar 

  26. Pankove, J.I., Tarng, M.L.: Amorphous silicon as a passivant for crystalline silicon. Appl. Phys. Lett. 34, 156 (1979)

    Article  CAS  Google Scholar 

  27. Spear, W.E., LeComber, P.G.: Substitutional doping of amorphous silicon. Solid State Comm. 17, 1193 (1975)

    Article  Google Scholar 

  28. Matsuura, H., Okuno, T., Okushi, H., Tanaka, K.: Electrical properties of n-amorphous/p-crystalline silicon heterojunctions. J. Appl. Phys. 55, 1012 (1984)

    Article  CAS  Google Scholar 

  29. Fossum, J.G.: Physical operation of back-surface-field silicon solar cells. IEEE Trans. Electron. Devices 24, 322 (1977)

    Article  Google Scholar 

  30. Taguchi, M., Terakawa, A., Maruyama, E., Tanaka, M.: Obtaining a higher Voc in HIT cells. Prog. Photovoltaics 13, 481 (2005)

    Article  CAS  Google Scholar 

  31. De Wolf, S., Beaucarne, G.: Surface passivation properties of boron-doped plasma-enhanced chemical vapor deposited hydrogenated amorphous silicon films on p-type crystal-line Si substrates. Appl. Phys. Lett. 88, 022104 (2006)

    Article  CAS  Google Scholar 

  32. Korte, L., Schmidt, M.: Investigation of gap states in phosphorous-doped ultra-thin a-Si:H by near-UV photoelectron spectroscopy. J. Non-Cryst. Solids 354, 2138 (2008)

    Article  CAS  Google Scholar 

  33. Tanaka, M., Taguchi, M., Matsuyama, T., Sawada, T., Tsuda, S., Nakano, S., Hanafusa, H., Kuwano, Y.: Development of new a-Si/c-Si heterojunction solar cells: ACJ-HIT (artificially constructed junction-heterojunction with intrinsic thin-layer). Jpn. J. Appl. Phys. 31, 3518 (1992)

    Article  CAS  Google Scholar 

  34. Tsunomura, Y., Yoshimine, Y., Taguchi, M., Baba, T., Kinoshita, T., Kanno, H., Sakata, H., Maruyama, E., Tanaka, M.: Twenty-two percent efficiency HIT solar cell. Sol. Energy Mater. Sol. Cells 93, 670 (2009)

    Article  CAS  Google Scholar 

  35. Green, M.A., Emery, K., Hishikawa, Y., Warta, W.: Solar cell efficiency tables (version 36). Prog. Photovoltaics 18, 346 (2010)

    Article  Google Scholar 

  36. Zangwill, A.: Physics at surfaces. Cambridge University Press, Cambridge (1988)

    Google Scholar 

  37. Tamm, I.: Uber eine mögliche art der elektronenbindung an kristalloberflächen. Phys. Z. Sowjetunion 1, 733 (1932)

    CAS  Google Scholar 

  38. Shockley, W.: On the surface states associated with a periodic potential. Phys. Rev. 56, 317 (1939)

    Article  CAS  Google Scholar 

  39. Lüth, H.: Solid surfaces, interfaces and thin films. Springer, Berlin (2001)

    Google Scholar 

  40. Pointdexter, E.H., Caplan, P.J., Deal, B.E., Razouk, R.R.: Interface states and electron spin resonance centers in thermally oxidized (111) and (100) silicon wafers. J. Appl. Phys. 52, 879 (1981)

    Article  Google Scholar 

  41. Bean, K.E.: Anisotropic etching of silicon. IEEE Trans. Electron. Dev. 25, 1185 (1978)

    Article  Google Scholar 

  42. Seidel, H., Csepregi, L., Heuberger, A., Baumgärtel, H.: Anisotropic etching of crystalline silicon in alkaline solutions. J. Electrochem. Soc. 137, 3612 (1990)

    Article  CAS  Google Scholar 

  43. Yablonovitch, E., Cody, G.D.: Intensity enhancement in textured optical sheets for solar cells. IEEE Trans. Electron. Dev. 29, 300 (1982)

    Article  Google Scholar 

  44. Campbell, P., Green, M.A.: Light trapping properties of pyramidally textured surfaces. J. Appl. Phys. 62, 243 (1987)

    Article  Google Scholar 

  45. Adler, D.: Density of states in the gap of tetrahedrally bonded amorphous semiconductors. Phys. Rev. Lett. 41, 1755 (1978)

    Article  CAS  Google Scholar 

  46. Bechstedt, F.: Principles of surface physics. Springer, Berlin (2003)

    Book  Google Scholar 

  47. Binnig, G., Rohrer, H., Gerber, C., Weibel, W.: 7×7 reconstruction on Si(111) resolved in real space. Phys. Rev. Lett. 50, 120 (1983)

    Article  CAS  Google Scholar 

  48. Higashi, G.S., Chabal, Y.J., Trucks, G.W., Ragavachari, K.: Ideal hydrogen termination of the Si (111) surface. Appl. Phys. Lett. 56, 656 (1990)

    Article  CAS  Google Scholar 

  49. Hricovini, K., Günther, R., Thiry, P., Taleb-Ibrahimi, A., Indlekofer, G., Bonnet, J.E., Dumas, P., Petroff, Y., Blase, X., Zhu, X., Louie, S.G., Chabal, Y.J., Thiry, P.: Electronic structure and its dependence on local order for H/Si(111)-(1×1) surfaces. Phys. Rev. Lett. 70, 1992 (1993)

    Article  CAS  Google Scholar 

  50. Appelbaum, J.A., Baraff, G.A., Hamann, D.R.: The Si(100) surface. III. Surface reconstruction. Phys. Rev. 14, 588 (1976)

    Article  CAS  Google Scholar 

  51. D’Evelyn, M.P., Yang, Y.L., Sutcu, L.F.: π-bonded dimers, preferential pairing, and first-order desorption kinetics of hydrogen on Si(100)-(2x1). J. Chem. Phys. 96, 852 (1992)

    Article  Google Scholar 

  52. Wolkin, M.V., Jorne, J., Fauchet, P.M., Allan, G., Delerue, C.: Electronic states and luminescence in porous silicon quantum dots: the role of oxygen. Phys. Rev. Lett. 82, 197 (1999)

    Article  CAS  Google Scholar 

  53. Grundner, M., Jacob, H.: Investigations on hydrophilic and hydrophobic silicon (100) wa-fer surfaces by X-ray photoelectron and high-resolution electron energy loss-spectroscopy. Appl. Phys. A: Solids Surf. 39, 73 (1986)

    Article  Google Scholar 

  54. Kern, W., Puotinen, D.A.: Cleaning solutions based on hydrogen peroxide for use in silicon semiconductor technology. RCA Rev. 31, 187 (1970)

    CAS  Google Scholar 

  55. Fenner, D.B., Biegelsen, D.K., Bringans, R.D.: Silicon surface passivation by hydrogen termination: A comparative study of preparation methods. J. Appl. Phys. 66, 419 (1989)

    Article  CAS  Google Scholar 

  56. Weinberger, B.R., Peterson, G.G., Eschrich, T.C., Krasinski, H.A.: Surface chemistry of HF passivated silicon: X-ray photoelectron and ion scattering spectroscopy results. J. Appl. Phys. 60, 3232 (1986)

    Article  CAS  Google Scholar 

  57. Judge, J.S.: A study of the dissolution of SiO2 in acidic fluoride solutions. J. Electrochem. Soc. 118, 1772 (1971)

    Article  CAS  Google Scholar 

  58. Trucks, G.W., Raghavachari, K., Higashi, G.S., Chabal, Y.J.: Mechanism of HF etching of silicon surfaces: A theoretical understanding of hydrogen passivation. Phys. Rev. Lett. 65, 504 (1990)

    Article  CAS  Google Scholar 

  59. Ubara, H., Imura, T., Hiraki, A.: Formation of Si-H bonds on the surface of microcrystal-line silicon covered with SiOx by HF treatment. Solid State Commun. 50, 673 (1984)

    Article  CAS  Google Scholar 

  60. Burrows, V.A., Chabal, Y.J., Higashi, G.S., Raghavachari, K., Christman, S.B.: Infrared spectroscopy of Si(111) surfaces after HF treatment: Hydrogen termination and surface morphology. Appl. Phys. Lett. 53, 998 (1988)

    Article  CAS  Google Scholar 

  61. Chabal, Y.J.: Surface infrared spectroscopy. Surf. Sci. Reports 8, 211 (1988)

    Article  CAS  Google Scholar 

  62. Schluter, M., Cohen, M.L.: Nature of conduction-band surface resonances for Si(111) surfaces with and without chemisorbed overlayers. Phys. Rev. B 17, 716 (1977)

    Article  Google Scholar 

  63. Becker, R.S., Higashi, G.S., Chabal, Y.J., Becker, A.J.: Atomic-scale conversion of clean Si-(111):H-1×1 to Si(111)-2×1 by electron-stimulated desorption. Phys. Rev. Lett. 65, 1917 (1990)

    Article  CAS  Google Scholar 

  64. Chabal, Y.J., Higashi, G.S., Raghavachari, K., Burrows, V.A.: Infrared spectroscopy of Si(111) and Si(100) surfaces after HF treatment: Hydrogen termination and surface morphology. J. Vac. Sci. Technol. A 7, 2104 (1989)

    Article  CAS  Google Scholar 

  65. Boland, J.J.: Structure of the H-saturated Si(100) surface. Phys. Rev. Lett. 65, 3325 (1990)

    Article  CAS  Google Scholar 

  66. Flowers, M.C., Jonathan, N.B.H., Liu, Y., Morris, A.: Temperature programmed desorption of molecular hydrogen from a Si(111) surface: Theory and experiment. J. Chem. Phys. 99, 7038 (1993)

    Article  CAS  Google Scholar 

  67. Gupta, P., Colvin, V.L., George, S.M.: Hydrogen desorption kinetics from monohydride and dihydride species on silicon surfaces. Phys. Rev. B 37, 8234 (1988)

    Article  CAS  Google Scholar 

  68. Ciraci, S., Batra, I.P.: Theory of transition from the dihydride to the monohydride phase on the Si(001) surface. Surf. Sci. 178, 80 (1986)

    Article  CAS  Google Scholar 

  69. Wise, M.L., Koehler, B.G., Gupta, P., Coon, P.A., George, S.M.: Comparison of hydrogen desorption kinetics from Si (111) 7×7 and Si (100) 2×1. Surf. Sci. 258, 166 (1991)

    Article  CAS  Google Scholar 

  70. Chabal, Y.J., Raghavachari, K.: New ordered structure for the H-saturated Si(100) surface: the (3×1) phase. Phys. Rev. Lett. 54, 1055 (1985)

    Article  CAS  Google Scholar 

  71. Neuwald, U., Hessel, H.E., Feltz, A., Memmert, U., Behm, R.J.: Wet chemical etching of Si (100) surfaces in concentrated NH4F solution: formation of (2×1)H reconstructed Si(100) terraces versus (111) faceting. Surf. Sci. Lett. 296, 8 (1993)

    Article  Google Scholar 

  72. Le Tanh, V., Bouchier, D., Hincelin, G.: Low-temperature formation of Si(001)2x1 surfaces from wet chemical cleaning in NH4F solution. J. Appl. Phys. 87, 3700 (2000)

    Article  Google Scholar 

  73. McKelvey, J.P.: Solid state and semiconductor physics. Harper & Row, New York (1966)

    Google Scholar 

  74. Shockley, W., Read, W.T.: Statistics of the recombinations of holes and electrons. Phys. Rev. 87, 835 (1952)

    Article  CAS  Google Scholar 

  75. Hall, R.N.: Electron-Hole Recombination in Germanium. Phys. Rev. 87, 387 (1952)

    Article  CAS  Google Scholar 

  76. Vaillant, F., Jousse, D.: Recombination at dangling bonds and steady-state photoconductivity in a-Si:H. Phys. Rev. 34, 4088 (1986)

    Article  CAS  Google Scholar 

  77. Aberle, A.G., Glunz, S., Warta, W.: Impact of illumination level and oxide parameters on Shockley–Read–Hall recombination at the Si-SiO2 interface. J. Appl. Phys. 71, 4422 (1992)

    Article  CAS  Google Scholar 

  78. Aberle, A.G.: Crystalline silicon solar cells: advanced surface passivation and analyses. University of New South Wales, Sydney (1999)

    Google Scholar 

  79. Sze, S.M.: Physics of semiconductor devices. John Wiley & Sons, New York (1981)

    Google Scholar 

  80. Girisch, R.B.M., Mertens, R.P., de Keersmaecker, R.F.: Determination of Si-SiO2 interface recombination parameters using a gate-controlled pointjunction diode under illumination. IEEE Trans. Electron Devices 35, 203 (1988)

    Article  CAS  Google Scholar 

  81. Eades, W.D., Swanson, R.M.: Calculation of surface generation and recombination velocities at the Si-SiO2 interface. J. Appl. Phys. 58, 4267 (1985)

    Article  CAS  Google Scholar 

  82. Olibet, S., Vallat-Sauvain, E., Ballif, C.: Model for a-Si:H/c-Si interface recombination based on the amphoteric nature of silicon dangling bonds. Phys. Rev. B 76, 035326 (2007)

    Article  CAS  Google Scholar 

  83. Olibet, S., Vallat-Sauvain, E., Fesquet, L., Monachon, C., Hessler-Wyser, A., Damon-Lacoste, J., De Wolf, S., Ballif, C.: Properties of interfaces in amorphous/crystalline silicon heterojunctions. Phys. Stat. Sol: (a) 207, 651 (2010)

    Article  CAS  Google Scholar 

  84. Hubin, J., Shah, A.V., Sauvain, E.: Effects of dangling bonds on the recombination function in amorphous-semiconductors. Philos. Mag. Lett. 66, 115 (1992)

    Article  CAS  Google Scholar 

  85. Li, T.T.A., McIntosh, K.R., Cuevas, A.: Limitations of a simplified dangling bond recombination model for a-Si:H. J. Appl. Phys. 104, 113718 (2008)

    Article  CAS  Google Scholar 

  86. Schroder, D.K.: Semiconductor Material and Device Characterization, 3rd edn. Wiley-Interscience, Hoboken (2006)

    Google Scholar 

  87. Nagel, H., Berge, C., Aberle, A.G.: Generalized analysis of quasi-steady-state and quasitransient measurements of carrier lifetimes in semiconductors. J. Appl. Phys. 86, 6218 (1999)

    Article  CAS  Google Scholar 

  88. Sinton, R.A., Cuevas, A.: Contactless determination of current–voltage characteristics and minority-carrier lifetimes in semiconductors from quasi-steady-state photoconductance data. Appl. Phys. Lett. 69, 2510 (1996)

    Article  CAS  Google Scholar 

  89. Luke, K.L., Cheng, L.J.: Analysis of the interaction of a laser pulse with a silicon wafer: Determination of bulk lifetime and surface recombination velocity. J. Appl. Phys. 61, 2282 (1987)

    Article  CAS  Google Scholar 

  90. Kerr, M.J., Cuevas, A.: General parameterization of Auger recombination in crystalline silicon. J. Appl. Phys. 91, 2473 (2002)

    Article  CAS  Google Scholar 

  91. Spenke, E.: Electronic semiconductors. McGraw-Hill, New York (1958)

    Google Scholar 

  92. Tarng, M.L., Pankove, J.I.: Passivation of p-n junction in crystalline silicon by amorphous silicon. IEEE Trans. Electron. Dev. 26, 1728 (1979)

    Article  Google Scholar 

  93. Weitzel, I., Primig, R., Kempter, K.: Preparation of glow discharge amorphous silicon for passivation layers. Thin Solid Films 75, 143 (1982)

    Article  Google Scholar 

  94. De Wolf, S., Kondo, M.: Abruptness of a-Si:H∕c-Si interface revealed by carrier lifetime measurements. Appl. Phys. Lett. 90, 042111 (2007)

    Article  CAS  Google Scholar 

  95. Fujiwara, H., Kondo, M.: Impact of epitaxial growth at the heterointerface of a-Si:H∕c-Si solar cells. Appl. Phys. Lett. 86, 032112 (2005)

    Article  CAS  Google Scholar 

  96. Schulze, T.F., Beushausen, H.N., Hansmann, T., Korte, L., Rech, B.: Accelerated interface defect removal in amorphous/crystalline silicon heterostructures using pulsed annealing and microwave heating. Appl. Phys. Lett. 95, 182108 (2009)

    Article  CAS  Google Scholar 

  97. Strahm, B., Andrault, Y., Bätzner, D., Lachenal, D., Guérin, C., Kobas, M., Mai, J., Mendes, B., Schulze, T., Wahli, G., Buechel, A.: Uniformity and quality of monocrystalline silicon passivation by thin intrinsic amorphous silicon in a new generation plasma-enhanced chemical vapor deposition reactor. Mater. Res. Soc. Symp. Proc. 1245, A01–A04 (2010)

    Article  CAS  Google Scholar 

  98. Descoeudres, A., Barraud, L., Bartlome, R., Choong, G., De Wolf, S., Zicarelli, F., Ballif, C.: The silane depletion fraction as an indicator for the amorphous/crystalline silicon interface passivation quality. Appl. Phys Lett. 97, 183505 (2010)

    Article  CAS  Google Scholar 

  99. De Wolf, S., Olibet, S., Ballif, C.: Stretched-exponential a-Si:H∕c-Si interface recombination decay. Appl. Phys. Lett. 93, 032101 (2008)

    Article  CAS  Google Scholar 

  100. Das, U.K., Burrows, M.Z., Lu, M., Bowden, S., Birkmire, R.W.: Surface passivation and heterojunction cells on Si(100) and (111) wafers using dc and rf plasma deposited Si:H thin films. Appl. Phys. Lett. 92, 063504 (2008)

    Article  CAS  Google Scholar 

  101. Gielis, J.J.H., van den Oever, P.J., Hoex, B., van de Sanden, M.C.M., Kessels, W.M.M.: Real-time study of a-Si:H∕c-Si heterointerface formation and epitaxial Si growth by spectroscopic ellipsometry, infrared spectroscopy, and second-harmonic generation. Phys. Rev. B 77, 205329 (2008)

    Article  CAS  Google Scholar 

  102. Wang, Q., Page, M.R., Iwaniczko, E., Xu, Y., Roybal, L., Bauer, R., To, B., Yuan, H.C., Duda, A., Hasoon, F., Yan, Y.F., Levi, D., Meier, D., Branz, H.M., Wang, T.H.: Efficient heterojunction solar cells on p-type crystal silicon wafers. Appl. Phys. Lett. 96, 013507 (2010)

    Article  CAS  Google Scholar 

  103. Himpsel, F.J., Hollinger, G., Pollak, R.A.: Determination of the Fermi-level pinning position at Si (111) surfaces. Phys. Rev. B 28, 7014 (1983)

    Article  CAS  Google Scholar 

  104. Davis, E.A., Mott, N.F.: Conduction in non-crystalline systems. 5. Conductivity, optical absorption and photoconductivity in amorphous semiconductors. Philos. Mag. 22, 903 (1970)

    Article  CAS  Google Scholar 

  105. Marshall, J.M., Owen, A.E.: Drift mobility studies in vitreous arsenic triselenide. Philos. Mag. 24, 1281 (1971)

    Article  CAS  Google Scholar 

  106. Mott, N.F.: Introductory talk; Conduction in non-crystalline materials. J. Non-Cryst. Solids 8-10, 1 (1972)

    Article  CAS  Google Scholar 

  107. Spear, W.E., LeComber, P.G.: Electronic properties of substituted doped amorphous Si and Ge. Philos. Mag. 33, 935 (1976)

    Article  CAS  Google Scholar 

  108. Davis, E.A.: Amorphous Semiconductors. In: Brodsky, M.H. (ed.), Springer, Berlin (1979)

    Google Scholar 

  109. Elliott, S.R.: Physics of amorphous materials. Longman, London (1983)

    Google Scholar 

  110. Tersoff, J.: Schottky barrier heights and the continuum of gap states. Phys. Rev. Lett. 52, 465 (1984)

    Article  CAS  Google Scholar 

  111. Walukiewicz, W.: Mechanism of Schottky barrier formation: The role of amphoteric native defects. J. Vac. Sci Technol. B 5, 1062 (1987)

    Article  CAS  Google Scholar 

  112. Biegelsen, D.K., Johnson, N.M., Stutzmann, M., Poindexter, E.H., Caplan, P.J.: Native defects at the Si/SiO2 interface-amorphous silicon revisited. Appl. Surf. Sci. 22/23, 879 (1985)

    Article  Google Scholar 

  113. Winer, K.: Chemical-equilibrium description of the gap-state distribution in a-Si:H. Phys. Rev. Lett. 63, 1487 (1989)

    Article  CAS  Google Scholar 

  114. Powell, M.J., Deane, S.C.: Improved defect-pool model for charged defects in amorphous silicon. Phys. Rev. 48, 10815 (1994)

    Google Scholar 

  115. Hubbard, J.: Electron correlations in narrow energy bands. Proc. Roy. Soc. London A 267, 238 (1963)

    Google Scholar 

  116. Madan, A., Shaw, M.P.: The physics and applications of amorphous semiconductors. Academic Press, San Diego (1988)

    Google Scholar 

  117. Anderson, P.W.: Model for the electronic structure of amorphous semiconductors. Phys. Rev. Lett. 34, 953 (1975)

    Article  Google Scholar 

  118. Jackson, W.B.: The correlation-energy of the dangling silicon bond in a-Si:H. Solid State Comm. 44, 477 (1982)

    Article  CAS  Google Scholar 

  119. Street, R.A.: Hydrogenated amorphous silicon. Cambridge University Press, Cambridge (1991)

    Book  Google Scholar 

  120. Adler, D., Yoffa, E.J.: Electronic structure of amorphous semiconductors. Phys. Rev. Lett. 36, 1197 (1976)

    Article  Google Scholar 

  121. Connell, G.A.N., Pawlik, J.R.: Use of hydrogenation in structural and electronic studies of gap states in amorphous germanium. Phys. Rev. B 13, 787 (1976)

    Article  CAS  Google Scholar 

  122. Pankove, J.I., Lampert, M.A., Tarng, M.L.: Hydrogenation and dehydrogenation of amorphous and crystalline silicon. Appl. Phys. Lett. 32, 439 (1978)

    Article  CAS  Google Scholar 

  123. Knights, J.C., Lucovsky, G., Nemanich, R.J.: Defects in plasma-deposited a-Si:H. J. Non-Cryst. Solids 32, 393 (1979)

    Article  CAS  Google Scholar 

  124. Street, R.A., Knights, J.C., Biegelsen, D.K.: Luminescence studies of plasma-deposited hydrogenated silicon. Phys. Rev. B 18, 1880 (1978)

    Article  CAS  Google Scholar 

  125. Biegelsen, D.K., Street, R.A., Tsai, C.C., Knights, J.C.: Hydrogen evolution and defect creation in amorphous Si:H alloys. Phys. Rev. B 20, 4839 (1979)

    Article  CAS  Google Scholar 

  126. Korte, L., Laades, A., Schmidt, M.: Electronic states in a-Si:H/c-Si heterostructures. J. Non-Cryst. Solids 352, 1217 (2006)

    Article  CAS  Google Scholar 

  127. Kohlrausch, R.: Theorie des elektrischen rückstandes in der leidener flasche. Pogg. Ann. Phys. Chem. 91, 179 (1854)

    Article  Google Scholar 

  128. Williams, G., Watts, D.C.: Non-symmetrical dielectric relaxation behaviour arising from a simple empirical decay function. Trans. Farad. Soc. 66, 80 (1970)

    Article  CAS  Google Scholar 

  129. Cardona, M., Chamberlin, R.V., Marx, W.: The history of the stretched exponential function. Ann. Phys (Leipzig) 16, 842 (2007)

    Article  Google Scholar 

  130. Gotze, W., Sjogren, L.: Relaxation processes in supercooled liquids. Rep. Prog. Phys. 55, 241 (1992)

    Article  Google Scholar 

  131. Phillips, J.C.: Stretched exponential relaxation in molecular and electronic glasses. Rep. Prog. Phys. 59, 1133 (1996)

    Article  CAS  Google Scholar 

  132. Scher, H., Shlesinger, M.F., Bendler, J.T.: Time-scale invariance in transport and relaxation. Phys. Today 44, 26 (1991)

    Article  Google Scholar 

  133. Laherrere, J., Sornette, D.: Stretched exponential distributions in nature and economy: "fat tails" with characteristic scales. Eur. Phys. J. B 2, 525 (1998)

    Article  CAS  Google Scholar 

  134. Kakalios, J., Street, R.A., Jackson, W.B.: Stretched-exponential relaxation arising from dispersive diffusion of hydrogen in amorphous silicon. Phys. Rev. Lett. 59, 1037 (1987)

    Article  CAS  Google Scholar 

  135. Van de Walle, C.G.: Stretched-exponential relaxation modeled without invoking statistical distributions. Phys. Rev. B 53, 11292 (1996)

    Article  Google Scholar 

  136. Fujiwara, H., Kondo, M.: Real-time monitoring and process control in amorphous∕ crystalline silicon heterojunction solar cells by spectroscopic ellipsometry and infrared spectroscopy. Appl. Phys. Lett. 86, 032112 (2005)

    Article  CAS  Google Scholar 

  137. Brodsky, M.H., Cardona, M., Cuomo, J.J.: Infrared and Raman spectra of the silicon-hydrogen bonds in amorphous silicon prepared by glow discharge and sputtering. Phys. Rev. B 16, 3556 (1977)

    Article  CAS  Google Scholar 

  138. Lucovsky, G., Nemanich, R.J., Knights, J.C.: Structural interpretation of the vibrational spectra of a-Si: H alloys. Phys. Rev. B 19, 2064 (1979)

    Article  CAS  Google Scholar 

  139. Langford, A.A., Fleet, M.L., Nelson, B.P., Lanford, W.A., Maley, N.: Infrared absorption strength and hydrogen content of hydrogenated amorphous silicon. Phys. Rev. B 45, 13367 (1992)

    Article  CAS  Google Scholar 

  140. De Wolf, S.: Unpublished data

    Google Scholar 

  141. Burrows, M.Z., Das, U.K., Opila, R.L., De Wolf, S., Birkmire, R.W.: Role of hydrogen bonding environment in a-Si:H films for c-Si surface passivation. J. Vac. Sci. Technol. A 26, 683 (2008)

    Article  CAS  Google Scholar 

  142. Smets, A.H.M., van de Sanden, M.C.M.: Relation of the Si-H stretching frequency to the nanostructural Si-H bulk environment. Phys. Rev. B 76, 073202 (2007)

    Article  CAS  Google Scholar 

  143. Johnson, N.M., Ponce, F.A., Street, R.A., Nemanich, R.J.: Defects in single-crystal silicon induced by hydrogenation. Phys. Rev. B 35, 4166 (1987)

    Article  CAS  Google Scholar 

  144. Tsai, C.C., Anderson, G.B., Thompson, R.: Low temperature growth of epitaxial and amorphous silicon in a hydrogen-diluted silane plasma. J. Non-Cryst. Solids 137, 673 (1991)

    Article  Google Scholar 

  145. Eaglesham, J., Gossmann, H.J., Cerullo, M.: Limiting thickness hepi for epitaxial growth and room-temperature Si growth on Si(100). Phys. Rev. Lett. 65, 1227 (1990)

    Article  CAS  Google Scholar 

  146. Schwarzkopf, J., Selle, B., Bohne, W., Röhrich, J., Sieber, I., Fuhs, W.: Disorder in silicon films grown epitaxially at low temperature. J. Appl. Phys. 93, 5215 (2003)

    Article  CAS  Google Scholar 

  147. Teplin, C.W., Iwancziko, E., To, B., Moutinho, H., Stradins, P., Branz, H.M.: Breakdown physics of low-temperature silicon epitaxy grown from silane radicals. Phys. Rev. B 74, 235428 (2006)

    Article  CAS  Google Scholar 

  148. Gielis, J.J.H., van den Oever, P.J., van de Sanden, M.C.M., Kessels, W.M.M.: a-Si:H∕c-Si heterointerface formation and epitaxial growth studied by real time optical probes. Appl. Phys. Lett. 90, 202108 (2007)

    Article  CAS  Google Scholar 

  149. Levi, D.H., Teplin, C.W., Iwaniczko, E., Yan, Y., Wang, T.H., Branz, H.M.: Real-time spectroscopic ellipsometry studies of the growth of amorphous and epitaxial silicon for photovoltaic applications. J. Vac. Sci. Technol. A 24, 1676 (2006)

    Article  CAS  Google Scholar 

  150. Hamers, R.J., Köhler, U.K., Demuth, J.E.: Epitaxial growth of silicon on Si(001) by scanning tunneling microscopy. J. Vac. Sci. Technol. A 8, 195 (1990)

    Article  CAS  Google Scholar 

  151. Metiu, H., Lu, Y.T., Zhang, Z.: Epitaxial growth and the art of computer simulations. Science 255, 1088 (1992)

    Article  CAS  Google Scholar 

  152. Bartlome, R.: Unpublished data

    Google Scholar 

  153. Bartlome, R., Feltrin, A., Ballif, C.: Infrared laser-based monitoring of the silane dissociation during deposition of silicon thin films. Appl. Phys. Lett. 94, 201–501 (2009)

    Article  CAS  Google Scholar 

  154. Faist, J., Capasso, F., Sivco, D.L., Sirtori, L., Hutchinson, A.L., Cho, A.Y.: Quantum cascade laser. Science 264, 553 (1994)

    Article  CAS  Google Scholar 

  155. Sansonnens, L., Howling, A., Hollenstein, C.: Degree of dissociation measured by FTIR absorption spectroscopy applied to VHF silane plasmas. Plasma Sources Sci. Technol. 7, 114 (1998)

    Article  CAS  Google Scholar 

  156. Strahm, B., Howling, A., Sansonnens, L., Hollenstein, C.: Plasma silane concentration as a determining factor for the transition from amorphous to microcrystalline silicon in SiH4/H2 discharges. Plasma Sources Sci. Technol. 16, 80 (2007)

    Article  CAS  Google Scholar 

  157. Howling, A., Strahm, B., Colsters, P., Sansonnens, L., Hollenstein, C.: Fast equilibration of silane/hydrogen plasmas in large area RF capacitive reactors monitored by optical emission spectroscopy. Plasma Sources Sci. Technol. 16, 679 (2007)

    Article  CAS  Google Scholar 

  158. Catalano, A., Wood, G.: A method for improved short-wavelength response in hydrogenated amorphous silicon-based solar cells. J. Appl. Phys. 63, 1220 (1988)

    Article  CAS  Google Scholar 

  159. Collins, R.W.: In situ study of p-type amorphous silicon growth from diborane-silane mixtures: surface reactivity and interface effects. Appl. Phys. Lett. 53, 1086 (1988)

    Article  CAS  Google Scholar 

  160. Carlson, D.E., Wronski, C.R.: Amorphous silicon solar cell. Appl. Phys. Lett. 28, 671 (1976)

    Article  CAS  Google Scholar 

  161. Street, R.A.: Localized states in doped amorphous-silicon. J. Non-Cryst. Solids 77&78, 1 (1985)

    Article  Google Scholar 

  162. Beyer, W., Herion, J., Wagner, H.: Fermi energy dependence of surface desorption and diffusion of hydrogen in a-Si:H. J. Non-Cryst. Solids 114, 217 (1989)

    Article  CAS  Google Scholar 

  163. Beyer, W.: Hydrogen effusion – a probe for surface desorption and diffusion. Physica B 170, 105 (1991)

    Article  CAS  Google Scholar 

  164. Street, R.A., Tsai, C.C., Kakalios, J., Jackson, W.B.: Hydrogen diffusion in amorphous-silicon. Philos. Mag. B 56, 305 (1987)

    Article  CAS  Google Scholar 

  165. Beyer, W., Zastrow, U.: Dependence of H diffusion in hydrogenated silicon on doping and the fermi level. In: Mat. Res. Soc. Symp. Proc. vol. 4, p. A20.4.1 (2000)

    Google Scholar 

  166. Beyer, W.: Hydrogen phenomena in hydrogenated amorphous silicon. In: Hydrogen in Semiconductors II Book Series: Semicond. and Semimetals, vol. 61, p. 165. Academic Press, San Diego (1999)

    Google Scholar 

  167. Street, R.A.: Hydrogen diffusion and electronic metastability in amorphous-silicon. Physica B 170, 69 (1991)

    Article  CAS  Google Scholar 

  168. Van de Walle, C.G., Street, R.A.: Silicon-hydrogen bonding and hydrogen diffusion in amorphous silicon. Phys. Rev. B 51, 10615 (1995)

    Article  Google Scholar 

  169. Van de Walle, C.G., Denteneer, P.J.H., Bar-Yam, Y., Pantelides, S.T.: Theory of hydrogen diffusion and reactions in crystalline silicon. Phys. Rev. B 39, 10791 (1989)

    Article  Google Scholar 

  170. De Wolf, S., Kondo, M.: Nature of doped a-Si:H/c-Si interface recombination. J. Appl. Phys. 105, 103707 (2009)

    Article  CAS  Google Scholar 

  171. Shockley, W., Moll, J.L.: Solubility of flaws in heavily-doped semiconductors. Phys. Rev. 119, 1480 (1960)

    Article  CAS  Google Scholar 

  172. Van de Walle, C.G.: Hydrogen as a cause of doping in zinc oxide. Phys Rev. Lett. 85, 1012 (2000)

    Article  Google Scholar 

  173. Van de Walle, C.G., Neugebauer, J.G.: Universal alignment of hydrogen levels in semiconductors, insulators and solutions. Nature 423, 626 (2003)

    Article  CAS  Google Scholar 

  174. Baraff, G.A., Schluter, M.: Electronic structure, total energies, and abundances of the elementary point defects in GaAs. Phys. Rev. Lett. 55, 1327 (1985)

    Article  CAS  Google Scholar 

  175. Zunger, A.: Practical doping principles. Appl. Phys. Lett. 83, 57 (2003)

    Article  CAS  Google Scholar 

  176. Van de Walle, C.G.: Strategies for controlling the conductivity of wide-band-gap semiconductors. Phys. Stat. Sol. (b) 229, 221 (2002)

    Article  Google Scholar 

  177. Zhang, S.B., Wei, S.H., Zunger, A.: A phenomenological model for systematization and prediction of doping limits in II–VI and I–III–VI compounds. J. Appl. Phys. 83, 3192 (1998)

    Article  CAS  Google Scholar 

  178. Van de Walle, C.G., Neugebauer, J.G.: First-principles calculations for defects and impurities: Applications to III-nitrides. J. Appl. Phys. 95, 3851 (2004)

    Article  CAS  Google Scholar 

  179. Street, R.A., Biegelsen, D.K., Knights, J.C.: Defect states in doped and compensated a-Si: H. Phys. Rev. B 24, 969 (1981)

    Article  CAS  Google Scholar 

  180. Bar-Yam, Y., Adler, D., Joannopoulos, J.D.: Structure and electronic states in disordered systems. Phys. Rev. Lett. 57, 467 (1986)

    Article  CAS  Google Scholar 

  181. Branz, H.M.: Dangling bonds in doped amorphous silicon: Equilibrium, relaxation, and transition energies. Phys. Rev. B 39, 5107 (1989)

    Article  CAS  Google Scholar 

  182. De Wolf, S., Kondo, M.: Boron-doped a-Si:H∕c-Si interface passivation: Degradation mechanism. Appl. Phys. Lett. 91, 112109 (2007)

    Article  CAS  Google Scholar 

  183. Yamamoto, T., Katayama-Yoshida, H.: Materials design for the fabrication of low-resistivity p-type GaN using a codoping method. Jpn. J. Appl. Phys. 36, L180 (1997)

    Google Scholar 

  184. Matsuda, A., Matsumura, M., Yamasaki, S., Yamamoto, H., Imura, T., Okushi, H., Izima, S., Tanaka, K.: Boron doping of hydrogenated silicon thin-films. Jpn. J. Appl. Phys. 183, L183 (1981)

    Google Scholar 

  185. Fritzsche, H., Tanielian, M., Tsai, C.C., Gaczi, P.J.: Hydrogen content and density of plasma-deposited amorphous silicon-hydrogen. J. Appl. Phys. 50, 3366 (1979)

    Article  CAS  Google Scholar 

  186. Smets, A.H.M., Kessels, W.M.M., van de Sanden, M.C.M.: Vacancies and voids in hydrogenated amorphous silicon. Appl. Phys. Lett. 82, 1547 (2003)

    Article  CAS  Google Scholar 

  187. Rostan, P.J., Rau, U., Nguyen, V.X., Kirchartz, T., Schubert, M.B., Werner, J.H.: Low-temperature a-Si:H/ZnO/Al back contacts for high-efficiency silicon solar cells. Sol. Energy Mater. Sol. Cells 90, 1345 (2006)

    Article  CAS  Google Scholar 

  188. Einsele, F., Rostan, P.J., Schubert, M.B., Rau, U.: Recombination and resistive losses at ZnO∕a-Si:H∕c-Si interfaces in heterojunction back contacts for Si solar cells. J. Appl. Phys. 102, 094507 (2007)

    Article  CAS  Google Scholar 

  189. Stiebig, H., Siebke, F., Beyer, W., Beneking, C., Rech, B., Wagner, H.: Interfaces in a-Si:H solar cell structures. Sol. Energy and Sol. Mater. 48, 351 (1997)

    Article  CAS  Google Scholar 

  190. Shah, A., Torres, P., Tscharner, R., Wyrsch, N., Keppner, H.: Photovoltaic technology: the case for thin-film solar cells. Science 285, 692 (1999)

    Article  CAS  Google Scholar 

  191. Shah, A.: Thin-film silicon solar cells. EPFL Press, Lausanne (2010)

    Google Scholar 

  192. Branz, H.M., Crandall, R.S.: Defect equilibrium thermodynamics in hydrogenated amorphous silicon: consequences for solar cells. Solar Cells 27, 159 (1989)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

De Wolf, S. (2012). Intrinsic and Doped a-Si:H/c-Si Interface Passivation. In: van Sark, W.G.J.H.M., Korte, L., Roca, F. (eds) Physics and Technology of Amorphous-Crystalline Heterostructure Silicon Solar Cells. Engineering Materials, vol 0. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22275-7_7

Download citation

Publish with us

Policies and ethics