Skip to main content

Part of the book series: Engineering Materials ((ENG.MAT.,volume 0))

Abstract

Heterojunction (HJ) silicon solar cells use crystalline silicon wafers for both carrier transport and absorption, and amorphous and/or microcrystalline thin silicon layers for passivation and junction formation. The top electrode is comprised of a transparent conductive oxide (TCO) layer in combination with a metal grid. Heterojunction silicon solar cells have attracted a lot of attention because they can achieve high conversion efficiencies, up to 25%, while using low temperature processing, typically below 200 °C for the complete process. Low processing temperature allows handling of silicon wafers of less than 100 μm thick while maintaining a high yield.

In this chapter the best wafer-based homojunction and heterojunction crystalline silicon solar cells are compared, and the advantages of heterojunction silicon solar cells related to the processing of the junction and solar cell operation are explained.

The development and recent status of HIT (Heterojunction with Intrinsic Thinlayer) silicon solar cells at the company Sanyo are presented. In order to reduce cost of the HIT solar cells, Sanyo is focusing on reducing the thickness of the silicon wafer. In 2009 the company demonstrated 22.8% conversion efficiency and record high open circuit voltage of 0.743 V on a solar cell based on a 98 μm thick wafer with a total area of 100.3 cm2.

Achievements from other research groups such as Tokyo Institute of Technology (Tokyo Tech) and the National Institute of Advanced Industrial Science and Technology (AIST) in Japan, the National Renewable Energy Laboratory (NREL) in the U.S.A., Helmholtz Zentrum Berlin (HZB) and Frauhofer institute for Solar Energy Systems (Frauhofer ISE) in Germany, L’Institut National de l’Energie Solaire (INES) in France, Neuchatel PV-lab of Ecole Polytechnique Federale de Lausanne (EPFL) in Switzerland, National Agency for New Technologies, Energy and the Environmentand (ENEA) in Italy and Mingdao University in China are presented. The research activities and results achieved with heterojunction silicon solar cells in the Netherlands are also reported.

Challenges to further improve the performance of heterojunction silicon solar cells by minimizing the optical, recombination, and resistance losses in heterojunction silicon solar cells are discussed. These challenges deal with wafer cleaning, suppression of epitaxial growth, controlling thin silicon layer thickness, reduction of absorption losses in thin silicon layers and transparent conductive oxide, surface texturing and the improvement of grid electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Green, M.: Crystalline Silicon Solar cells. In: Archer, M., Hill, R. (eds.) Crystalline Silicon Solar Cells, p. 149. Imperial College Press, London (2001)

    Google Scholar 

  2. Watt, G., Fechner, H.: Photovoltaic market and industry trends – latest results from the IEA PVPS programme. E&I Elektrotechnik und Informationstechnik 126, 328 (2009)

    Article  Google Scholar 

  3. Würfel, P.: Physics of Solar Cells: From Principles to New Concepts. Wiley-WCH, Weinheim (2005)

    Google Scholar 

  4. Honsberg, C., Bowden, S.: High efficiency solar cells. PVCDROM, http://pvcdrom.pveducation.org/manufact/labcells.htm

  5. Mishima, T., Taguchi, M., Sakata, H., Maruyama, E.: Development status of high-efficiency HIT solar cells. Sol. Energ. Mat. Sol. 95, 18 (2010)

    Article  Google Scholar 

  6. Sawada, T., Terada, N., Tsuge, S., Baba, T., Takahama, T., Wakisaka, K., Tsuda, S., Nakano, S.: High-efficiency a-Si/c-Si heterojunction solar cell. In: Proceedings of the 24th IEEE Photovoltaic Specialists Conference (1994)

    Google Scholar 

  7. Maruyama, E., Terakawa, A., Taguchi, M., Yoshimine, Y., Ide, D., Baba, T., Shima, M., Sakata, H., Tanaka, M.: Sanyo’s challenges to the development of high-efficiency HIT solar cells and the expansion of HIT business. In: Proceedings of the 4th WCPEC (2006)

    Google Scholar 

  8. Roca, F., Cárabe, J., Jäger-Waldau, A.: Silicon heterojunction cells R&D in Europe. In: Proceedings of the 19th EU-PVSEC (2004)

    Google Scholar 

  9. Fujiwara, H., Sai, H., Kondo, M.: Crystalline Si Heterojunction Solar Cells with the Double Heterostructure of Hydrogenated Amorphous Silicon Oxide. Jpn. J. Appl. Phys. 48, 064506 (2009)

    Article  Google Scholar 

  10. Korte, L., Conrad, E., Angermann, H., Stangl, R., Schmidt, M.: Advances in a-Si:H/c-Si heterojunction solar cell fabrication and characterization. Sol. Energ. Mat. Sol. 93, 905 (2009)

    Article  CAS  Google Scholar 

  11. Lachenal, D., Andrault, Y., Bätzner, D., Guerin, C., Kobas, M., Mendes, B., Strahm, B., Tesfai, M., Wahli, G., Buechel, A., Descoeudres, A., Choong, G., Bartlome, R., Barraud, L., Zicarelli, F., Bôle, P., Fesquet, L., Damon-Lacoste, J., Wolf, S.D., Ballif, C.: High efficiency silicon heterojunction solar cell activities in Neuchatel, Switzerland. In: Proceedings of the 25th EU-PVSEC (2010)

    Google Scholar 

  12. Wang, Q., Page, M., Iwaniczko, E., Xu, Y., Roybal, L., Bauer, R., To, B., Yuan, H., Duda, A., Yan, Y.: Crystal silicon heterojunction solar cells by hot-wire CVD. In: Proceedings of the 33rd IEEE Photovoltaic Specialists Conference (2008)

    Google Scholar 

  13. Munoz, D., Ozanne, A., Harrison, S., Danel, A., Souche, F., Denis, C., Favier, A., Desrues, T., Nicolás, S.M., Nguyen, N., Hickel, P., Mur, P., Salvetat, T., Moriceau, H., Le-Tiec, Y., Kang, M., Kim, K., Janin, R., Pesenti, C., Blin, D., Nolan, T., Kashkoush, I., Ribeyron, P.: Towards high efficiency on full wafer a-Si:H/c-Si heterojunction solar cells: 19.6% on 148cm2. In: Proceedings of the 35th IEEE Photovoltaic Specialists Conference (2010)

    Google Scholar 

  14. Tucci, M., Cesare, G.: 17% efficiency heterostructure solar cell based on p-type crystalline silicon. J. Non-Cryst. Solids 338, 663 (2004)

    Article  Google Scholar 

  15. Miyajima, S., Irikawa, J., Yamada, A., Konagai, M.: High-quality nanocrystalline cubic silicon carbide emitter for crystalline silicon heterojunction solar cells. Appl. Phys. Lett. 97, 023504 (2010)

    Article  Google Scholar 

  16. Lien, S.: Characterization and optimization of ITO thin films for application in heterojunction silicon solar cells. Thin Solid Films 518, S10 (2010)

    Article  Google Scholar 

  17. Bivour, M., Meinhardt, C., Pysch, D., Reichel, C., Ritzau, K., Hermle, M., Glunz, S.: n-type silicon solar cells with amorphous/crystalline silicon heterojunction rear emitter. In: Proceedings of the 35th IEEE Photovoltaic Specialists Conference (2010)

    Google Scholar 

  18. Tanaka, M., Taguchi, M., Matsuyama, T., Sawada, T., Tsuda, S., Nakano, S., Hanafusa, H., Kuwano, Y.: Development of new a-Si/c-Si heterojunction solar cells: ACJ-HIT (artificially constructed junction-heterojunction with Intrinsic thin-layer). Jpn. J. Appl. Phys. 31, 3518 (1992)

    Article  CAS  Google Scholar 

  19. Tanaka, M., Okamoto, S., Tsuge, S., Kiyama, S.: Development of hit solar cells with more than 21% conversion efficiency and commercialization of highest performance hit modules. In: Proceedings of the 3rd WCPEC (2003)

    Google Scholar 

  20. Sanyo: HIT double technology (assessed 2009), http://us.sanyo.com/dynamic/LinkLinstingItems/Files/ITDoublePresentation-1.pdf

  21. Tsunomura, Y., Yoshimine, Y., Taguchi, M., Baba, T., Kinoshita, T., Kanno, H., Sakata, H., Maruyama, E., Tanaka, M.: Twenty-two percent efficiency HIT solar cell. Sol. Energ. Mat. Sol. 93, 670 (2009)

    Article  CAS  Google Scholar 

  22. Kawai, M., Microdevices, N.: Sanyo claims 98 micron-thick HIT solar cell with 22.8% efficiency. Tech-on (assessed 2009), http://techon.nikkeibp.co.jp/english/NEWS_EN/20090923/175532/

  23. Osborne, M.: Sanyo targets 600MW HIT solar cell production with new plant (assessed 2009), http://www.pv-tech.org/news/_a/sanyo_targets_600mw_hit_solar_cell_production_with_new_plant/

  24. Fujiwara, H., Kondo, M.: Impact of epitaxial growth at the heterointerface of a-Si:H/c-Si solar cells. Appl. Phys. Lett. 90, 013503 (2007)

    Article  Google Scholar 

  25. Gielis, J., Oever, P., Hoex, B., Sanden, M., Kessels, W.: Real-time study of a-Si:H/c-Si heterointerface formation and epitaxial Si growth by spectroscopic ellipsometry, infrared spectroscopy, and second-harmonic generation. Phys. Rev. B 77, 205329 (2008)

    Article  Google Scholar 

  26. Levi, D., Teplin, C., Iwaniczko, E., Yan, Y., Wang, T., Branz, H.: Real-time spectroscopic ellipsometry studies of the growth of amorphous and epitaxial silicon for photovoltaic applications. J. Vac. Sci. Technol. A 24, 1676 (2006)

    Article  CAS  Google Scholar 

  27. Olibet, S.: Properties of interfaces in amorphous/crystalline silicon heterojunctions. PhD thesis. IMT, Neuchatel University (2008)

    Google Scholar 

  28. Olibet, S., Vallat-Sauvain, E., Ballif, C.: Model for a-Si:H/c-Si interface recombination based on the amphoteric nature of silicon dangling bonds. Phys. Rev. B 76, 035326 (2007)

    Article  Google Scholar 

  29. Fesquet, L., Olibet, S., Vallat-Sauvain, E., Shah, A., Ballif, C.: High quality surface passivation and heterojunction fabrication by VHF-PECVD deposition of amorphous silicon on crystalline Si: Theory and experiments. In: Proceedings of the 22th EU-PVSEC (2007)

    Google Scholar 

  30. Wolf, S.D., Kondo, S.: Nature of doped a-Si:H/c-Si interface recombination. J. of Appl. Phys. 105, 103707 (2009)

    Article  Google Scholar 

  31. Wang, T., Iwaniczko, E., Page, M., Levi, D., Yan, Y., Branz, H., Wang, Q.: Effect of emitter deposition temperature on surface passivation in hot-wire chemical vapor deposited silicon heterojunction solar cells. Thin Solid Films 501, 284 (2006)

    Article  CAS  Google Scholar 

  32. Lien, S., Wu, B., Liu, J., Wuu, D.: Fabrication and characteristics of n-Si/c-Si/p-Si heterojunction solar cells using hot-wire CVD. Thin Solid Films 516, 747 (2008)

    Article  CAS  Google Scholar 

  33. Dao, V.A., Heo, J., Choi, H., Kim, Y., Park, S., Jung, S., Lakshminarayan, N., Yi, J.: Simulation and study of the influence of the buffer intrinsic layer, back-surface field, densities of interface defects, resistivity of p-type silicon substrate and transparent conductive oxide on heterojunction with intrinsic thin-layer (HIT) solar cell. Solar Energy 84, 777 (2010)

    Article  CAS  Google Scholar 

  34. Zhao, L., Li, H., Zhou, C., Diao, H., Wang, W.: Optimized resistivity of p-type Si substrate for HIT solar cell with Al back surface field by computer simulation. Sol. Energy 83, 812 (2009)

    Article  CAS  Google Scholar 

  35. Sinton, R., Cuevas, A.: Contactless determination of current–voltage characteristics and minority-carrier lifetimes in semiconductors from quasi-steady-state photoconductance data. Appl. Phys. Lett. 69, 2510 (1996)

    Article  CAS  Google Scholar 

  36. Tucci, M., Rosa, R., Roca, F.: CF4/O2 dry etching of textured crystalline silicon surface in a-Si:H/c-Si heterojunction for photovoltaic applications. Sol. Energ. Mat. Sol. 69, 175 (2001)

    Article  CAS  Google Scholar 

  37. Angermann, H., Rappich, J.: Surface States and Recombination Loss on Wet-Chemically Passivated Si Studied by Surface Photovoltage (SPV) and Photoluminescence (PL). Sol. St. Phen. 134, 41 (2007)

    Article  Google Scholar 

  38. Sritharathikhun, J., Jiang, F., Miyajima, S., Yamada, A., Konagai, M.: Optimization of p-type hydrogenated microcrystalline silicon oxide window layer for high-efficiency crystalline silicon heterojunction solar cells. Jpn. J. Appl. Phys. 48, 101603 (2009)

    Article  Google Scholar 

  39. Kanevce, A., Metzger, W.: The role of amorphous silicon and tunneling in heterojunction with intrinsic thin layer (HIT) solar cells. J. Appl. Phys. 105, 094507 (2009)

    Article  Google Scholar 

  40. Fujiwara, H., Kondo, M.: Real-time monitoring and process control in amorphous/crystalline silicon heterojunction solar cells by spectroscopic ellipsometry and infrared spectroscopy. Appl. Phys. Lett. 86, 032112 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zeman, M., Zhang, D. (2012). Heterojunction Silicon Based Solar Cells. In: van Sark, W.G.J.H.M., Korte, L., Roca, F. (eds) Physics and Technology of Amorphous-Crystalline Heterostructure Silicon Solar Cells. Engineering Materials, vol 0. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22275-7_2

Download citation

Publish with us

Policies and ethics