Skip to main content

Part of the book series: Engineering Materials ((ENG.MAT.,volume 0))

Abstract

The silicon heterojunction solar cell (SHJ) has made rapid progress in reaching high efficiency and it is already developed as an industrially viable product. However, much of its progress has come through process development while there is scarce knowledge on the microscopic nature of the functioning of this device. Although this device as a whole can be considered as bulk type, the parts of a SHJ solar cell that control the charge transport behavior are limited to very thin regions, either interface or a very thin layer. This poses problems on accurate determination of the physical quantities, such as defect densities and energetic positions, conductivity, carrier recombination and the overall charge transport behavior. This chapter gives the present understanding of electrical characterization of SHJ solar cells and provides a study of defects in the interesting regions of the device.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Repins, I., Contreras, M.A., Egaas, B., de Hart, C., Scharf, J., Perkins, C.L., To, B., Noufi, R.: 19∙9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81∙2% fill factor. Prog. Photovolt. Res. Appl. 16, 235 (2008)

    Article  CAS  Google Scholar 

  2. Wu, X.: High-efficiency polycrystalline CdTe thin-film solar cells. Sol. Energy 77, 803–814 (2004)

    Article  CAS  Google Scholar 

  3. Guter, W., Schöne, J., Philipps, S.P., Steiner, M., Siefer, G., Wekkeli, A., Welser, E., Oliva, E., Bett, A.W., Dimroth, F.: Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight. App. Phys. Lett. 94, 223504 (2009)

    Article  Google Scholar 

  4. Niemann, E., Fischer, R., Leidich, D., Linhart, E.: Electrical properties of a-SiCx /a-Si heterojunctions. J. Non-Cryst. Sol. 77-78, 991–994 (1985)

    Google Scholar 

  5. Hattori, Y., Kruangam, D., Katoh, K., Nitta, Y., Okamoto, H., Hamakawa, Y.: High-conductive wide band gap p-type a-SiC:H prepared by ECR CVD and its application to high efficiency a-Si basis solar cells. In: Proc. 19th IEEE Phtovoltaic Specialists Conf., p. 686 (1987) (a-Si/c-Si)

    Google Scholar 

  6. Han, M.-K., Mastsumoto, Y., Hirata, G., Okamoto, H., Hamakawa, Y.: Characterization of boron doped μc-SiC/c-Si heterojunction solar cells. Journal of Non-Crystalline Solids 115, 195–197 (1989) (μc-SiC/c-Si)

    Article  CAS  Google Scholar 

  7. Tanaka, M., Taguchi, M., Matsuyama, T., Sawada, T., Tsuda, S., Nakano, S., Hanafusa, H., Kuwano, Y.: Development of new a-Si/c-Si heterojunction solar cells: ACJ-HIT (Artificially Constructed Junction-Heterojunction with Intrinsic Thin-layer). Jpn. J. Appl. Phys. 31, 3518–3522 (1992)

    Article  CAS  Google Scholar 

  8. Taguchi, M., Tsunomura, Y., Inoue, H., Taira, S., Nakashima, T., Baba, T., Sakata, H., Maruyama, E.: High Efficiency HIT Solar Cell on Thin (< 100 μm) Silicon Wafer. In: Proceedings of the 24th European Photovoltaic Solar Energy Conference, Hamburg, Germany, p. 1690, WIP-Munich, Germany, (2009)

    Google Scholar 

  9. van Cleef, M.W.M., Rath, J.K., Rubinelli, F.A., van der Werf, C.H.M., Schropp, R.E.I., van der Weg, W.F.: Performance of heterojunction p+ microcrystalline silicon n crystalline silicon solar cells. J. Appl. Phys. 82, 6089 (1997)

    Article  Google Scholar 

  10. Descoeudres, A., Barraud, L., Bartlome, R., Choong, G., de Wolf, S., Zicarelli, F., Ballif, C.: The silane depletion fraction as an indicator for the amorphous/crystalline silicon interface passivation quality. Appl. Phys. Lett. 97, 183505 (2010)

    Article  Google Scholar 

  11. Lachenal, D., Andrault, Y., Bätzner, D., Guerin, C., Kobas, M., Mendes, B., Strahm, B., Tesfai, M., Wahli, G., Buechel, A.: High efficiency silicon heterojunction solar cell activities in neuchatel, switzerland. In: 25th European Photovoltaic Solar Energy Conference and Exhibition / 5th World Conference on Photovoltaic Energy Conversion, Valencia, Spain, p. 1272 (2010)

    Google Scholar 

  12. Daniel, A., Hickel, P.E., Souche, F., Salvetrat, T., Letiec, Y., Nolan, T., Ribeyron, P.J.: Control of texturized silicon substrates surface passivation for a-Si:H/c-Si heterojunction solar cells. In: 25th European Photovoltaic Solar Energy Conference and Exhibition /5th World Conference on Photovoltaic Energy Conversion, Valencia, Spain, p. 1951 (2010)

    Google Scholar 

  13. Conrad, E., Korte, L., Maydell, K.V., Angermann, H., Schubert, C., Stangl, R., Schmidt, M.: Development and optimization of a-Si:H/c-Si heterojunction solar cells completely processed at low temperatures. In: 21st European Photovoltaic Solar Energy Conference and Exhibition, Dresden, Germany, p. 784 (2006)

    Google Scholar 

  14. Wang, Q., Page, M.R., Iwaniczko, E., Xu, Y., Roybal, L., Bauer, R., To, B., Yuan, H.-C., Duda, A., Hasoon, F., Yan, Y.F., Levi, D., Meier, D., Branz, H.M., Wang, T.H.: Efficient heterojunction solar cells on p-type crystal silicon wafers. Applied Physics Letters 96, 013507 (2010)

    Article  Google Scholar 

  15. Gudovskikh, A.S., Kleider, J.P., Froizheim, A., Fuhs, W., Terukov, E.I.: Investigation of a-Si:H/c-Si heterojunction solar cells interface properties. Thin Solid Films, 451-452, 345–349 (2004)

    Google Scholar 

  16. Poindexter, E.H., Rong, F.C., Buchwald, W.R., Gerardi, G.J., Keeble, D.J., Warren, W.L.: Electrically-detected magnetic resonance near the p-doped/n-doped interface of Si junction diodes. Colloids and Surfaces A: Physicochemical and Engineering Aspects 72, 119–125 (1993)

    Article  CAS  Google Scholar 

  17. Korte, L., Schmidt, M.: Journal of Non-Crystalline Solids  354, 2138–2143 (2008)

    Google Scholar 

  18. Ahrenkiel, R.K., Johnston, S.W.: An advanced technique for measuring minority-carrier parameters and defect properties of semiconductors. Mater. Sci. Eng. B 102, 161–172 (2003)

    Article  Google Scholar 

  19. Sinton, R., Cuevas, A., Stuckings, M.: Quasi-steady-state photoconductance, a new method for solar cell material and device characterization In: Proceedings of the 25th IEEE Photovoltaic Specialists Conference, pp. 457–460 (1996); De Wolf, S., Kondo, M.: Nature of doped a-Si:H/c-Si interface recombination. Journal of Applied Physics 105, 103707 (2009)

    Google Scholar 

  20. Klein, D., Wuensch, F., Kunst, M.: The determination of charge-carrier lifetime in silicon. Physica Status Solidi (B)—Basic Solid State Physics 245, 1865–1876 (2008); Zhao, L., Diao, H., Zeng, X., Zhou, C., Li, H., Wang, W.: Comparative study of the surface passivation on crystalline silicon by silicon thin films with different structures. Physica B 405, 61–64 (2010)

    Article  CAS  Google Scholar 

  21. Bruggemann, R., Reynolds, S.: Modulated photoluminescence studies for lifetime determination in amorphous-silicon passivated crystalline-silicon wafers. Journal of Non-Crystalline Solids 352, 1888–1891 (2006)

    Article  Google Scholar 

  22. Lam, Y.W.: Surface-state density and surface potential in MIS capacitors by surface photovoltage measurements. J. Phys. D: Appl. Phys. 4, 1370–1375 (1971) ; Korte, L., Conrad, E., Angermann, H., Stangl, R., Schmidt, M.: Advances in a-Si:H/c-Si heterojunction solar cell fabrication and characterization. Solar Energy Materials & Solar Cells 93, 905–910 (2009); Maydell, K.V., Korte, L., Laades, A., Stangl, R., Conrad, E., Lange, F., Schmidt, M.: Characterization and optimization of the interface quality in amorphous/crystalline silicon heterojunction solar cells. Journal of Non-Crystalline Solids 352, 1958–1961 (2006)

    Article  CAS  Google Scholar 

  23. Fujiwara, H., Kondo, M.: Impact of epitaxial growth at the heterointerface of a-Si:H/c-Si solar cells. Applied Physics Letters 90, 013503 (2007)

    Article  Google Scholar 

  24. Hartman, S., Lind, M.A.: Spectral response measurements for solar cells. Solar Cells 7, 147–157 (1982-1983)

    Google Scholar 

  25. Bordin, N., Kreinin, L., Eisenberg, N.: The use of the self-calibration method for accurate determination of silicon solar cell internal quantum efficiency. Solar Energy Materials & Solar Cells 63, 247–257 (2000)

    Article  CAS  Google Scholar 

  26. Schulze, T.F., Korte, L., Conrad, E., Schmidt, M., Rech, B.: Electrical transport mechanisms in a-Si:H/c-Si heterojunction solar cells. J. Appl. Phys. 107, 023711 (2010)

    Article  Google Scholar 

  27. Diouf, D., Kleider, J.P., Desrues, T., Ribeyron, P.-J.: Study of interdigitated back contact silicon heterojunctions solar cells by two-dimensional numerical simulations. Materials Science and Engineering B, 159-160, 291–294 (2009) (ATLAS)

    Google Scholar 

  28. Froitzheim, A., Stangl, R., Elstner, L., Kriegel, M., Fuhs, W.: AFORS-HET: a computer-program for the simulation of heterojunction solar cells to be distributed for public use. In: Proceedings of the 3rd World Conference on Photovoltaic Energy Conversion, vol. A, pp. 279–282 (2003) (AFORS-HET)

    Google Scholar 

  29. Hernández-Como, N., Morales-Acevedo, A.: Simulation of hetero-junction silicon solar cells with AMPS-1D. Solar Energy Materials & Solar Cells 94, 62–67 (2010) (AMPS-1D)

    Article  Google Scholar 

  30. Clugston, D., Basore, P.: PC1D version 5: 32-bit solar cell modeling on personal computers. In: Proceeding of the 26th IEEE Photovoltaic Specialists Conference, Anaheim, CA, pp. 207–210 (1997); Lien, S.-Y., Wuu, D.-S.: Simulation and Fabrication of Heterojunction Silicon Solar Cells from Numerical Computer and Hot-Wire CVD. Prog. Photovolt: Res. Appl. 17, 489–501 (2009) (Pc1D)

    Google Scholar 

  31. Fonash, S.J.: Solar Cell Device Physics. Academic Press Inc., London (1981)

    Google Scholar 

  32. Merten, J., Asensi, J.M., Voz, C., Shah, A., Platz, R., Andreu, J.: Improved Equivalent Circuit and Analytical Model for Amorphous Silicon Solar Cells and Modules. IEEE Trans. Electron Devices 45, 423–429 (1998)

    Article  Google Scholar 

  33. Barrio, R., Gandıa, J.J., Carabe, J., Gonzalez, N., Torres, I., Munoz, D., Voz, C.: Surface recombination analysis in silicon-heterojunction solar cells. Solar Energy Materials & Solar Cells 94, 282–286 (2010)

    Article  CAS  Google Scholar 

  34. Merten, J., Voz, C., Munoz, A., Asensi, J.M., Andreu, J.: The role of the buffer layer in the light of a new equivalent circuit for amorphous silicon solar cells. Solar Energy Materials & Solar Cells 57, 153–165 (1999)

    Article  CAS  Google Scholar 

  35. van Cleef, M.W.M., Philippens, M.W.H., Rubinelli, F.A., Kolter, M., Schropp, R.E.I.: Electrical transport mechanisms in p+a-SiC:H/n c-Si heterojunctions: dark J-V-T characteristics. In: Mat. Res. Soc. Symp. Proc.,, vol. 420, p. 239 (1996)

    Google Scholar 

  36. van Cleef, M.W.M.: Amorphous crystalline silicon heterostructures and solar cells, Ph.D Thesis, Utrecht University (1998)

    Google Scholar 

  37. Matsuura, H., Okuno, T., Okushi, H., Tanaka, K.: Electrical properties of n-amorphous/p-crystalline silicon heterojunctions. J. Appl. Phys. 55, 1012 (1984)

    Article  CAS  Google Scholar 

  38. Taguchi, M., Maruyama, E., Tanaka, M.: Temperature Dependence of Amorphous/Crystalline Silicon Heterojunction, Solar Cells. Jap. J. Appl. Phys. 47, 814–818 (2008)

    Article  CAS  Google Scholar 

  39. Jensen, N., Rau, U., Hausner, R.M., Uppal, S., Oberbeck, L., Bergmann, R.B., Werner, J.H.: Recombination mechanisms in amorphous silicon/crystalline silicon heterojunction solar cells. J. Appl. Phys. 87, 2639 (2000)

    Article  CAS  Google Scholar 

  40. Rubinelli, F., Albournoz, S., Buitrago, R.: Amorphous-crystalline silicon heterojunction: Theoretical evaluation of the current terms. Solid-state Electron. 32, 1055 (1989)

    Google Scholar 

  41. Rahmouni, M., Datta, A., Chatterjee, P., Damon-Lacoste, J., Ballif, C., Roca i Cabarrocas, P.: Carrier transport and sensitivity issues in heterojunction with intrinsic thin layer solar cells on N-type crystalline silicon: A computer simulation study. J. Appl. Phys. 107, 054521 (2010)

    Article  Google Scholar 

  42. van Cleef, M.W.M., Rubinelli, F.A., Rizzoli, R., Pinghini, R., Schropp, R.E.I., van der Weg, W.F.: Amorphous silicon carbide/crystalline silicon heterojunction solar cell: A comprehensive study of the photocarrier collection. Jap. J. App. Phys. 37, 3926–3932 (1998)

    Article  Google Scholar 

  43. Rath, J.K., Schropp, R.E.I.: Incorporation of p-type microcrystalline silicon films in amorphous silicon based solar cells in a superstrate structure. Solar Energy Materials and Solar Cells 53, 189–203 (1998)

    Article  CAS  Google Scholar 

  44. van Cleef, M.W.M., Rubinelli, F.A., Rath, J.K., Schropp, R.E.I., van der Weg, W.F., Rizzoli, R., Summonte, C., Pinghini, R., Centurioni, E., Galloni, R.: Photocarrier collection in a-SiC:H/c-Si heterojunction solar cells. J. Non-Cryst. Sol. 227-230, 1291 (1998)

    Article  Google Scholar 

  45. Bowron, J.W., Damaskinos, S.D., Dixon, A.E.: Characterization of the anomalous second junction in Mo/CuInSe2/(CdZn)S/ITO solar cells. Solar Cells 31, 159–169 (1991)

    Article  CAS  Google Scholar 

  46. Tsunomura, Y., Yoshimine, Y., Taguchi, M., Baba, T., Kinoshita, T., Kanno, H., Sakata, H., Maruyama, E., Tanaka, M.: Twenty-two percent efficiency HIT solar cell. Solar Energy Materials & Solar Cells 93, 670–673 (2009)

    Article  CAS  Google Scholar 

  47. Wang, A., Zhao, J., Green, M.A.: 24 % efficient silicon solar cells. Appl. Phys. Lett. 57, 602 (1990)

    Article  CAS  Google Scholar 

  48. Maruyama, E., Terakawa, A., Taguchi, M., Yoshimine, Y., Ide, D., Baba, T., Shima, M., Sakata, H., Tanaka, M.: Sanyo’s challenges to the development of high-efficiency HIT solar cells and the expansion of HIT business. In: Proceedings of WCPEC-4, Hawaii, vol. 3, pp. 1455–1460 (2006)

    Google Scholar 

  49. Wang, Q.: High-efficiency hydrogenated amorphous/crystalline Si heterojunction solar cells. Phil. Mag. 89, 2587–2598 (2009)

    Article  CAS  Google Scholar 

  50. Dao, V.A., Lee, Y., Kim, S., Kim, Y., Lakshminarayan, N., Yi, J.: Interface characterization and electrical transport mechanisms in a-Si:H/c-Si heterojunction solar cells. Journal of The Electrochemical Society 158(3), H312–H317 (2011)

    Google Scholar 

  51. Datta, A., Rahmouni, M., Nath, M., Boubekri, R., Roca i Cabarrocas, P., Chatterjee, P.: Insights gained from computer modeling of heterojunction with instrinsic thin layer “HIT” solar cells. Solar Energy Materials & Solar Cells 94, 1457–1462 (2010)

    Article  CAS  Google Scholar 

  52. Fujiwara, H., Sai, H., Kondo, M.: Japanese Journal of Applied Physics 48, 064506 (2009)

    Google Scholar 

  53. Banerjee, C., Narayanan, K.L., Haga, K., Sritharathikhun, J., Miyajima, S., Yamada, A., Konagai, M.: Fabrication of microcrystalline cubic silicon carbide/crystalline silicon heterojunction solar cell by hot wire chemical vapor deposition. Japanese Journal of Applied Physics 46, 1–6 (2007)

    Article  CAS  Google Scholar 

  54. Park, S., Cho, E., Song, D., Conibeer, G., Green, M.A.: n-Type silicon quantum dots and p-type crystalline silicon heteroface solar cells. Solar Energy Materials & Solar Cells 93, 684–690 (2009)

    Article  CAS  Google Scholar 

  55. Stegner, A.R., Pereira, R.N., Klein, K., Lechner, R., Dietmueller, R., Brandt, M.S., Stutzmann, M., Wiggers, H.: Electronic Transport in Phosphorus-Doped Silicon Nanocrystal Networks. Phys. Rev. Lett. 100, 026803 (2008)

    Article  CAS  Google Scholar 

  56. Cuniot, M., Marfaing, Y.: Energy band diagram of the a-Si:H/c-Si interface as determined by internal photoemission. Philos. Mag. B 57, 291 (1988)

    Article  CAS  Google Scholar 

  57. Mimura, H., Hatanaka, Y.: Energy‐band discontinuities in a heterojunction of amorphous hydrogenated Si and crystalline Si measured by internal photoemission. Appl. Phys. Lett. 50, 326 (1987)

    Article  CAS  Google Scholar 

  58. Wronski, C.R.: Review of direct measurements of mobility gaps in a-Si:H using internal photoemission. J. Non-Cryst. Solids 141, 16–23 (1992)

    Article  CAS  Google Scholar 

  59. Kane, E.O.: Theory of Photoelectric Emission from Semiconductors. Phys. Rev. 127, 131 (1962)

    Article  CAS  Google Scholar 

  60. van Cleef, M.W.M., Schropp, R.E.I., Rubinelli, F.A.: Significance of tunneling in p+ amorphous silicon carbide n crystalline silicon heterojunction solar cells. Appl. Phys. Lett. 73, 2609 (1998)

    Article  Google Scholar 

  61. Xu, X., Yang, J., Banerjee, A., Guha, S.: Band edge discontinuities between microcrystalline and amorphous hydrogenated silicon alloys and their effect on solar cell performance. Appl. Phys. Lett. 67, 2323 (1995)

    Article  CAS  Google Scholar 

  62. Sakata, I., Yamanaka, M., Kawanami, H.: Characterization of heterojunctions in crystalline-silicon-based solar cells by internal photoemission. Energy Mater. Sol. Cell 93, 737–741 (2009)

    Article  CAS  Google Scholar 

  63. Page, M.R., Iwaniczko, E., Xu, Y.-Q., Roybal, L., Hasoon, F., Wang, Q., Crandall, R.S.: Amorphous/crystalline silicon heterojunction solar cells with varying i-layer thickness. Thin Solid Films 519, 4527–4530 (2011)

    Article  CAS  Google Scholar 

  64. Stutzmann, M., Brandt, M., Beyer, M.W.: Spin-dependent processes in amorphous and microcrystalline silicon: a survey. J. Non-Cryst. 266-269, 1–22 (2000)

    Article  CAS  Google Scholar 

  65. Stuke, J.: Recent results on hydrogenated amorphous silicon. Ann. Rev. Mater. Sci. 15, 79–102 (1985)

    Article  CAS  Google Scholar 

  66. Olibet, S., Vallat-Sauvain, E., Ballif, C.: Model for a-Si:H/c-Si interface recombination based on the amphoteric nature of silicon dangling bonds. Physical Review B 76, 035326 (2007)

    Article  Google Scholar 

  67. Rath, J.K., Barbon, A., Schropp, R.E.I.: Clustered defects in hot wire chemical vapor deposited poly-silicon films. Journal of Non-Crystalline Solids 266-269, 548–552 (2000)

    Article  CAS  Google Scholar 

  68. Rath, J.K., Radhakrishna, S.: EPR studies of MoO centres in KDP single crystals. Phys. Status Solidi. (a) 100, 593 (1987)

    Article  Google Scholar 

  69. Kaplan, D., Solomon, I., Mott, N.F.: Explanation of the large spin-dependent recombination effect in semiconductors. J. Phys. Paris 51, L51 (1978)

    Google Scholar 

  70. Lips, K., Muller, R., Kanschat, P., Finger, F., Fuhs, W.: Spin-dependent processes in thin-film silicon solar cells. In: Mat. Res. Soc. Symp. Proc., vol. 609, A18.2.1 (2000)

    Google Scholar 

  71. Muller, R., Kanschat, P., Von Aichberger, S., Lips, K., Fuhs, W.: Identification of transport and recombination paths in homo and heterojunction silicon solar cells by electrically detected magnetic resonance. J. Non-cryst. Solids 266-269, 1124–1128 (2000)

    Google Scholar 

  72. Kawachi, G., Graeff, C.F.O., Brandt, M.S., Stutzmann, M.: Spin-dependent transport in Si thin-film transistors. In: Mat. Res. Soc. Symp. Proc., vol. 467, p. 851 (1997)

    Google Scholar 

  73. Boehme, C., Behrends, J., von Maydell, K., Schmidt, M., Lips, K.: Investigation of hopping transport in n-a-Si:H/c-Si solar cells with pulsed electrically detected magnetic resonance. Journal of Non-Crystalline Solids 352, 1113–1116 (2006)

    Article  CAS  Google Scholar 

  74. Boehme, C., Lips, K.: Theory of time-domain measurement of spin-dependent recombination with pulsed electrically detected magnetic resonance. Phys. Rev. B 68, 245105 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rath, J.K. (2012). Electrical Characterization of HIT Type Solar Cells. In: van Sark, W.G.J.H.M., Korte, L., Roca, F. (eds) Physics and Technology of Amorphous-Crystalline Heterostructure Silicon Solar Cells. Engineering Materials, vol 0. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22275-7_11

Download citation

Publish with us

Policies and ethics