Skip to main content

The Autonomic Nervous System

  • Chapter
  • First Online:
Stress Challenges and Immunity in Space

Abstract

The neural regulation of cardiac function is mainly determined, on its efferent side, by the interaction of sympathetic and vagal mechanisms. In most physiological conditions, the activation of either the sympathetic or vagal outflow is accompanied by the inhibition of the other suggesting the concept of sympatho-vagal balance as a horizontal beam pivoted at its center. This reciprocal organization, alluding to a synergistic design, seems instrumental to the fact that sympathetic excitation and simultaneous vagal inhibition, or vice versa, are both presumed to contribute to the increase or decrease in cardiac performance required for the various behaviors. The balance oscillates from states of quiescence, when homeostatic negative feedback reflexes predominate, to states of excitation, such as those due to emotion or physical exercise. However, this neural activity is not limited to peripheral regulation but it is able to deeply modify cortical circuitry related to stress responses and sleep homeostasis, as well as the immune system. As described in this chapter, the assessment of sympatho-vagal balance is a useful noninvasive tool to infer information about the state of the autonomic nervous system modulating the viscera and stress coping systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akselrod S, Gordon D, Ubel FA, Shannon DC, Berger AC, Cohen RJ (1981) Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control. Science 213(4504):220–222

    Article  PubMed  CAS  Google Scholar 

  • Baevsky RM, Moser M, Nikulina GA, Polyakov VV, Funtova II, Chernikova AG (1998) Autonomic regulation of circulation and cardiac contractility during a 14-month space flight. Acta Astronaut 42(1–8):159–173

    Article  PubMed  CAS  Google Scholar 

  • Beckers F, Seps B, Ramaekers D, Verheyden B, Aubert AE (2003) Parasympathetic heart rate modulation during parabolic flights. Eur J Appl Physiol 90(1–2):83–91

    Article  PubMed  CAS  Google Scholar 

  • Bellinger DL, Millar BA, Perez S et al (2008) Sympathetic modulation of immunity: relevance to disease. Cell Immunol 252(1–2):27–56

    Article  PubMed  CAS  Google Scholar 

  • Cooke WH, Ames JE IV, Crossman AA, Cox JF, Kuusela TA, Tahvanainen KU, Moon LB, Drescher J, Baisch FJ, Mano T, Levine BD, Blomqvist CG, Eckberg DL (2000) Nine months in space: effects on human autonomic cardiovascular regulation. J Appl Physiol 89(3):1039–1045

    PubMed  CAS  Google Scholar 

  • Coupé M, Fortrat JO, Larina I, Gauquelin-Koch G, Gharib C, Custaud MA (2009) Cardiovascular deconditioning: from autonomic nervous system to microvascular dysfunctions. Respir Physiol Neurobiol 169(Suppl 1):S10–S12

    Article  PubMed  Google Scholar 

  • Crandall CG, Engelke KA, Pawelczyk JA, Raven PB, Convertino VA (1994) Power spectral and time based analysis of heart rate variability following 15 days head-down bed rest. Aviat Space Environ Med 65(12):1105–1109

    PubMed  CAS  Google Scholar 

  • Eckberg DL, Neurolab Autonomic Nervous System Team (2003) Bursting into space: alterations of sympathetic control by space travel. Acta Physiol Scand 177(3):299–311

    Article  PubMed  CAS  Google Scholar 

  • Eckberg DL, Halliwill JR, Beightol LA, Brown TE, Taylor JA, Goble R (2010) Human vagal baroreflex mechanisms in space. J Physiol 588(Pt 7):1129–1138

    Article  PubMed  CAS  Google Scholar 

  • Esler M (1993) Clinical application of noradrenaline spillover methodology: delineation of regional human sympathetic nervous responses. Pharmacol Toxicol 73:243–253

    Article  PubMed  CAS  Google Scholar 

  • Ferretti G, Iellamo F, Pizzinelli P, Kenfack MA, Lador F, Lucini D, Porta A, Narkiewicz K, Pagani M (2009) Prolonged head down bed rest-induced inactivity impairs tonic autonomic regulation while sparing oscillatory cardiovascular rhythms in healthy humans. J Hypertens 27(3):551–561

    Article  PubMed  CAS  Google Scholar 

  • Fritsch-Yelle JM, Charles JB, Jones MM, Beightol LA, Eckberg DL (1994) Spaceflight alters autonomic regulation of arterial pressure in humans. J Appl Physiol 77(4):1776–1783

    PubMed  CAS  Google Scholar 

  • Fritsch-Yelle JM, Whitson PA, Bondar RL, Brown TE (1996) Subnormal norepinephrine release relates to presyncope in astronauts after spaceflight. J Appl Physiol 81(5):2134–2141

    PubMed  CAS  Google Scholar 

  • Goldberger AL, West BJ (1987) Fractals in physiology and medicine. Yale J Biol Med 60(5):421–435

    PubMed  CAS  Google Scholar 

  • Goldberger AL, Rigney DR, Mietus J, Antman EM, Greenwald S (1988) Nonlinear dynamics in sudden cardiac death syndrome: heart rate oscillations and bifurcations. Experientia 44(11–12):983–987

    Article  PubMed  CAS  Google Scholar 

  • Goldberger AL, Mietus JE, Rigney DR, Wood ML, Fortney SM (1994) Effects of head-down bed rest on complex heart rate variability: response to LBNP testing. J Appl Physiol 77(6):2863–2869

    PubMed  CAS  Google Scholar 

  • Goldstein DS, McCarty R, Polinsky RJ, Kopin IJ (1983) Relationship between plasma norepinephrine and sympathetic neural activity. Hypertension 5(4):552–559

    PubMed  CAS  Google Scholar 

  • Grassi G, Quarti-Trevano F, Seravalle G, Dell’Oro R (2007) Cardiovascular risk and adrenergic overdrive in the metabolic syndrome. Nutr Metab Cardiovasc Dis 17:473–481

    Article  PubMed  CAS  Google Scholar 

  • Gundel A, Drescher J, Spatenko YA, Polyakov VV (1999) Heart period and heart period variability during sleep on the MIR space station. J Sleep Res 8(1):37–43

    Article  PubMed  CAS  Google Scholar 

  • Guzzetti S, Piccaluga E, Casati R, Cerutti S, Lombardi F, Pagani M, Malliani A (1988) Sympathetic predominance in essential hypertension: a study employing spectral analysis of heart rate variability. J Hypertens 6:711–717

    Article  Google Scholar 

  • Guzzetti S, Borroni E, Garbelli PE et al (2005) Symbolic dynamics of heart rate variability a probe to investigate cardiac autonomic modulation. Circulation 112:465–470

    Article  PubMed  Google Scholar 

  • Hartikainen J, Tarkiainen I, Tahvanainen K, Mäntysaari M, Länsimies E, Pyörälä K (1993) Circadian variation of cardiac autonomic regulation during 24-h bed rest. Clin Physiol 13(2):185–196

    Article  PubMed  CAS  Google Scholar 

  • Hirayanagi K, Iwase S, Kamiya A, Sasaki T, Mano T, Yajima K (2004) Functional changes in autonomic nervous system and baroreceptor reflex induced by 14 days of 6 degrees head-down bed rest. Eur J Appl Physiol 92(1–2):160–167

    Article  PubMed  Google Scholar 

  • Huikuri HV, Mäkikallio TH, Peng CK, Goldberger AL, Hintze U, Møller M (2000) Fractal correlation properties of R-R interval dynamics and mortality in patients with depressed left ventricular function after an acute myocardial infarction. Circulation 101(1):47–53

    PubMed  CAS  Google Scholar 

  • Huikuri HV, Perkiömäki JS, Maestri R, Pinna GD (2009) Clinical impact of evaluation of cardiovascular control by novel methods of heart rate dynamics. Philos Transact A Math Phys Eng Sci 367(1892):1223–1238, Review

    Article  PubMed  Google Scholar 

  • Hyndman BW, Kitney RI, Sayers BM (1971) Spontaneous rhythms in physiological control systems. Nature 233(5318):339–341

    Article  PubMed  CAS  Google Scholar 

  • Iwase S, Mano T, Cui J, Kitazawa H, Kamiya A, Miyazaki S, Sugiyama Y, Mukai C, Kohno M, Nagaoka S (1998) Changes in muscle sympathetic nerve activity and effect of breathing maneuvers during microgravity induced by parabolic flight in humans. Environ Med 42(2):152–155

    PubMed  CAS  Google Scholar 

  • Iwase S, Mano T, Cui J, Kitazawa H, Kamiya A, Miyazaki S, Sugiyama Y, Mukai C, Nagaoka S (1999) Sympathetic outflow to muscle in humans during short periods of microgravity produced by parabolic flight. Am J Physiol 277(2 Pt 2):R419–R426

    PubMed  CAS  Google Scholar 

  • Kamiya A, Iwase S, Kitazawa H, Mano T (1999) Muscle sympathetic nerve activity (MSNA) after 120 days of 6 degrees head-down bed rest (HDBR). Environ Med 43(2):150–152

    PubMed  CAS  Google Scholar 

  • Kamiya A, Michikami D, Fu Q, Iwase S, Hayano J, Kawada T, Mano T, Sunagawa K (2003) Pathophysiology of orthostatic hypotension after bed rest: paradoxical sympathetic withdrawal. Am J Physiol Heart Circ Physiol 285(3):H1158–H1167

    PubMed  CAS  Google Scholar 

  • Kaplan DT, Furman MI, Pincus SM, Ryan SM, Lipsitz LA, Goldberger AL (1991) Aging and the complexity of cardiovascular dynamics. Biophys J 59(4):945–949

    Article  PubMed  CAS  Google Scholar 

  • Kato M, Adachi T, Koshino Y, Somers VK (2009) Obstructive sleep apnea and cardiovascular disease. Circ J 73(8):1363–1370, Review

    Article  PubMed  Google Scholar 

  • Kleiger RE (1987) Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. Am J Cardiol 59:256–262

    Article  PubMed  CAS  Google Scholar 

  • Lee ST, Hon EH (1965) The fetal electrocardiogram. iv. Unusual variations in the qrs complex during labor. Am J Obstet Gynecol 92:1140–1148

    PubMed  CAS  Google Scholar 

  • Legramante JM, Raimondi G, Massaro M, Cassarino S, Peruzzi G, Iellamo F (1999) Investigating feed-forward neural regulation of circulation from analysis of spontaneous arterial pressure and heart rate fluctuations. Circulation 99:1760–1766

    PubMed  CAS  Google Scholar 

  • Lipnicki DM (2009) Baroreceptor activity potentially facilitates cortical inhibition in zero gravity. Neuroimage 46(1):10–11

    Article  PubMed  Google Scholar 

  • Lombardi F (1986) Acute myocardial ischaemia, neural reflexes and ventricular arrhythmias. Eur Heart J 7(Suppl A):91–97

    PubMed  Google Scholar 

  • Maestri R, Pinna GD, Accardo A, Allegrini P, Balocchi R, D’Addio G, Ferrario M, Menicucci D, Porta A, Sassi R, Signorini MG, La Rovere MT, Cerutti S (2007) Nonlinear indices of heart rate variability in chronic heart failure patients: redundancy and comparative clinical value. J Cardiovasc Electrophysiol 18(4):425–433

    Article  PubMed  Google Scholar 

  • Mäkikallio TH, Seppänen T, Airaksinen KE, Koistinen J, Tulppo MP, Peng CK, Goldberger AL, Huikuri HV (1997) Dynamic analysis of heart rate may predict subsequent ventricular tachycardia after myocardial infarction. Am J Cardiol 80(6):779–783

    Article  PubMed  Google Scholar 

  • Mäkikallio TH, Tapanainen JM, Tulppo MP, Huikuri HV (2002) Clinical applicability of heart rate variability analysis by methods based on nonlinear dynamics. Card Electrophysiol Rev 6(3):250–255, Review

    Article  PubMed  Google Scholar 

  • Malik M (1989) Heart rate variability in relation to prognosis after myocardial infarction: selection of optimal processing techniques. Eur Heart J 10:1060–1074

    PubMed  CAS  Google Scholar 

  • Malliani A (2000) Principles of cardiovascular neural regulation in health and disease. Kluwer Academic Publishers, Boston/Dordrecht/London

    Book  Google Scholar 

  • Malliani A, Montano N (2002) Emerging excitatory role of cardiovascular sympathetic afferents in pathophysiological conditions. Hypertension 39(1):63–68

    Article  PubMed  CAS  Google Scholar 

  • Malliani A, Pagani M, Lombardi F, Cerutti S (1991) Cardiovascular neural regulation explored in the frequency domain. Circulation 84(2):482–492, Review

    PubMed  CAS  Google Scholar 

  • Mano T (2005) Autonomic neural functions in space. Curr Pharm Biotechnol 6(4):319–324

    Article  PubMed  CAS  Google Scholar 

  • Meck JV, Waters WW, Ziegler MG, deBlock HF, Mills PJ, Robertson D, Huang PL (2004) Mechanisms of postspaceflight orthostatic hypotension: low alpha1-adrenergic receptor responses before flight and central autonomic dysregulation postflight. Am J Physiol Heart Circ Physiol 286(4):H1486–H1495

    Article  PubMed  CAS  Google Scholar 

  • Migeotte PF, Prisk GK, Paiva M (2003) Microgravity alters respiratory sinus arrhythmia and short-term heart rate variability in humans. Am J Physiol Heart Circ Physiol 284(6):H1995–H2006

    PubMed  CAS  Google Scholar 

  • Montano N, Porta A, Cogliati C, Costantino G, Tobaldini E, Casali KR, Iellamo F (2009) Heart rate variability explored in the frequency domain: a tool to investigate the link between heart and behavior. Neurosci Biobehav Rev 33(2):71–80

    Article  PubMed  Google Scholar 

  • Narkiewicz K, Somers VK (2003) Sympathetic nerve activity in obstructive sleep apnoea. Acta Physiol Scand 177(3):385–390

    Article  PubMed  CAS  Google Scholar 

  • Pagani M, Lucini D (2001) Autonomic dysregulation in essential hypertension: insight from heart rate and arterial pressure variability. Auton Neurosci 90(1–2):76–82

    Article  PubMed  CAS  Google Scholar 

  • Pagani M, Lombardi F, Rimoldi O, Furlan R, Pizzinelli P, Sandrone G, Malfatto G, Dell’Orto S, Piccaluga E et al (1986) Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympatho-vagal interaction in man and conscious dog. Circ Res 59(2):178–193

    PubMed  CAS  Google Scholar 

  • Paton JFR, Boscan P, Pickering AE, Nalivaiko E (2005) The yin and yang of cardiac autonomic control: vago-sympathetic interactions revisited. Brain Res Rev 49:555–565

    Article  PubMed  CAS  Google Scholar 

  • Peng CK, Havlin S, Stanley HE, Goldberger AL (1995) Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos 5(1):82–87

    Article  PubMed  CAS  Google Scholar 

  • Pincus SM (1991) Approximate entropy as a measure of system complexity. Proc Natl Acad Sci USA 88(6):2297–2301

    Article  PubMed  CAS  Google Scholar 

  • Pincus SM, Goldberger AL (1994) Physiological time-series analysis: What does regularity quantify? Am J Physiol 266:H1643–H1656

    PubMed  CAS  Google Scholar 

  • Porta A, Guzzetti S, Montano N, Furlan R, Pagani M, Malliani A, Cerutti S (2001) Entropy, entropy rate, and pattern classification as tools to typify complexity in short heart period variability series. IEEE Trans Biomed Eng 48(11):1282–1291

    Article  PubMed  CAS  Google Scholar 

  • Porta A, Guzzetti S, Furlan R, Gnecchi-Ruscone T, Montano N, Malliani A (2007a) Complexity and nonlinearity in short-term heart period variability: comparison of methods based on local nonlinear prediction. IEEE Trans Biomed Eng 54(1):94–106

    Article  PubMed  Google Scholar 

  • Porta A, Faes L, Masé M, D’Addio G, Pinna GD, Maestri R, Montano N, Furlan R, Guzzetti S, Nollo G, Malliani A (2007b) An integrated approach based on uniform quantization for the evaluation of complexity of short-term heart period variability: application to 24 h holter recordings in healthy and heart failure humans. Chaos 17(1):015117

    Article  PubMed  CAS  Google Scholar 

  • Porta A, Tobaldini E, Guzzetti S, Furlan R, Montano N, Gnecchi-Ruscone T (2007c) Assessment of cardiac autonomic modulation during graded head-up tilt by symbolic analysis of heart rate variability. Am J Physiol Heart Circ Physiol 293(1):H702–H708

    Article  PubMed  CAS  Google Scholar 

  • Porta A, Gnecchi-Ruscone T, Tobaldini E, Guzzetti S, Furlan R, Montano N (2007d) Progressive decrease of heart period variability entropy-based complexity during graded head-up tilt. J Appl Physiol 103(4):1143–1149

    Article  PubMed  Google Scholar 

  • Pump B, Videbaek R, Gabrielsen A, Norsk P (1999) Arterial pressure in humans during weightlessness induced by parabolic flights. J Appl Physiol 87(3):928–932

    PubMed  CAS  Google Scholar 

  • Sayers BM (1973) Analysis of heart rate variability. Ergonomics 16(1):17–32

    Article  PubMed  CAS  Google Scholar 

  • Schlegel TT, Brown TE, Wood SJ, Benavides EW, Bondar RL, Stein F, Moradshahi P, Harm DL, Fritsch-Yelle JM, Low PA (2001) Orthostatic intolerance and motion sickness after parabolic flight. J Appl Physiol 90(1):67–82

    PubMed  CAS  Google Scholar 

  • Seps B, Beckers F, Aubert AE (2002) Heart rate variability during gravity transitions. Comput Cardiol 29:433–436

    PubMed  CAS  Google Scholar 

  • Shiraishi M, Kamo T, Kamegai M, Baevsky RM, Funtova II, Chernikova A, Nemoto S, Hotta M, Nomura Y, Suzuki T (2004) Periodic structures and diurnal variation in blood pressure and heart rate in relation to microgravity on space station MIR. Biomed Pharmacother 58(Suppl 1):S31–S34

    PubMed  Google Scholar 

  • Sigaudo-Roussel D, Custaud MA, Maillet A, Güell A, Kaspranski R, Hughson RL, Gharib C, Fortrat JO (2002) Heart rate variability after prolonged spaceflights. Eur J Appl Physiol 86(3):258–265

    Article  PubMed  Google Scholar 

  • Sternberg EM (2006) Neural regulation of innate immunity: a coordinated nonspecific host response to pathogens. Nat Rev Immunol 6:318–328

    Article  PubMed  CAS  Google Scholar 

  • Stowe RP, Mehta SK, Ferrando AA, Feeback DL, Pierson DL (2001) Immune responses and latent herpesvirus reactivation in spaceflight. Aviat Space Environ Med 72:884–889

    PubMed  CAS  Google Scholar 

  • Stowe RP, Sams CF, Pierson DL (2003) Effects of mission duration on neuroimmune responses in astronauts. Aviat Space Environ Med 74:1281–1284

    PubMed  Google Scholar 

  • Task Force of the European Society of Cardiology the North American Society of Pacing Electrophysiology (1996) Heart rate variability standards of measurement, physiological ­interpretation, and clinical use. Circulation 93:1043–1065

    Article  Google Scholar 

  • Tracey KJ (2002) The inflammatory reflex. Nature 420:853–859

    Article  PubMed  CAS  Google Scholar 

  • Tracey KJ (2009) Reflex control of immunity. Nat Rev Immunol 9(6):418–428, Review

    Article  PubMed  CAS  Google Scholar 

  • Traon AP, Sigaudo D, Vasseur P, Maillet A, Fortrat JO, Hughson RL, Gauquelin-Koch G, Gharib C (1998) Cardiovascular responses to orthostatic stress after a 42-day head-down bed-rest. Eur J Appl Physiol Occup Physiol 77:50–59

    PubMed  CAS  Google Scholar 

  • Valbo AB, Hagbarth KE, Torebjörk HE, Wallin BG (1979) Somatosensory, proprioceptive, and sympathetic activity in human peripheral nerves. Physiol Rev 59:919–957

    Google Scholar 

  • Verheyden B, Beckers F, Couckuyt K, Liu J, Aubert AE (2007) Respiratory modulation of cardiovascular rhythms before and after short-duration human spaceflight. Acta Physiol (Oxf) 191(4):297–308

    Article  CAS  Google Scholar 

  • Videbaek R, Norsk P (1997) Atrial distension in humans during microgravity induced by parabolic flights. J Appl Physiol 83(6):1862–1866

    PubMed  CAS  Google Scholar 

  • Voss A, Kurths J, Kleiner HJ, Witt A, Wessel N (1995) Improved analysis of heart rate variability by methods of nonlinear dynamics. J Electrocardiol 28(Suppl):81–88

    Article  PubMed  Google Scholar 

  • Voss A, Schulz S, Schroeder R, Baumert M, Caminal P (2009) Methods derived from nonlinear dynamics for analysing heart rate variability. Philos Transact A Math Phys Eng Sci 367(1887):277–296, Review

    Article  PubMed  Google Scholar 

  • Wallin BG, Charkoudian N (2007) Sympathetic neural control of integrated cardiovascular function: insights from measurement of human sympathetic nerve activity. Muscle Nerve 36:595–614

    Article  PubMed  CAS  Google Scholar 

  • Wessel N, Schirdewan A, Malik M, Voss A (1998) Symbolic dynamics—an independent method for detecting nonlinear phenomena of heart rate regulation. Biomed Tech 43(Suppl):510–511

    Article  Google Scholar 

  • Wessel N, Voss A, Kurths J, Schirdewan A, Hnatkova K, Malik M (2000) Evaluation of renormalised entropy for risk stratification using heart rate variability data. Med Biol Eng Comput 38(6):680–685

    Article  PubMed  CAS  Google Scholar 

  • Zucker IH (1996) Neural control of the circulation in heart failure and coronary ischaemia: introduction. Clin Exp Pharmacol Physiol 23:685–687

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola Montano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Montano, N., Tobaldini, E., Porta, A. (2012). The Autonomic Nervous System. In: Chouker, A. (eds) Stress Challenges and Immunity in Space. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22272-6_6

Download citation

Publish with us

Policies and ethics