Skip to main content

NK Cells Assessments: A Thirty-Year-Old History of Immune Stress Interaction in Space

  • Chapter
  • First Online:
Stress Challenges and Immunity in Space

Abstract

Natural killer (NK) cells are lymphocytes of the innate immune system that are critical in resistance against infection, viral infection in particular, and tumors. The past three decades of research have revealed that spaceflight factors change NK cell function of humans. The alterations that have been observed after long-duration spaceflights include altered: NK cell cytotoxicity, NK cell ability to form conjugates with target cells, NK cell percentages in peripheral blood, early NK cell activation. The magnitude and pattern of these changes can differ between missions and even between crew members on the same mission. However, an increase in the flight duration from 2 to 14 months does not lead to increased changes of the cytotoxic activity of NK cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Blanca IR, Bere EW, Youn HA, Ortaldo JR (2001) Human B cell activation by autologous NK cells is regulated by CD40-CD40 ligand interaction: role of memory B cells and CD5+ B cells. J Immunol 167:6132–6139

    PubMed  CAS  Google Scholar 

  • Borchers AT, Keen CL, Gershwin ME (2002) Microgravity and immune responsiveness: implications for space travel. Nutrition 18(10):889–898

    Article  PubMed  Google Scholar 

  • Borrego F, Pena J, Solana R (1993) Regulation of CD69 expression on human natural killer cells: differential involvement of protein kinase C and protein tyrosine kinases. Eur J Immunol 23(5):1039–1043

    Article  PubMed  CAS  Google Scholar 

  • Borrego F, Robertson MJ, Ritz J et al (1999) CD69 is a stimulatory receptor for natural killer cell and its cytotoxic effect is blocked by CD94 inhibitory receptor. Immunology 97(1):159–165

    Article  PubMed  CAS  Google Scholar 

  • Bosch JA, Berntson GG, Cacioppo JT et al (2005) Differential mobilization of functionally distinct NK subsets during acute psychologic stress. Psychosom Med 67:366–375

    Article  PubMed  Google Scholar 

  • Cohrs RJ, Mehta SK, Schmid DS et al (2008) Asymptomatic reactivation and shed of infectious varicella zoster virus in astronauts. J Med Virol 80:1116–1122

    Article  PubMed  CAS  Google Scholar 

  • Cooper MA, Fehniger TA, Caligiuri MA (2001) The biology of human natural killer-cell subsets. Trends Immunol 22:633–664

    Article  PubMed  CAS  Google Scholar 

  • Crucian BE, Stowe RP, Pierson DL, Sams CF (2008) Immune system Dysregulation following short- vs long-duration spaceflight. Aviat Space Environ Med 72(9):835–843

    Article  Google Scholar 

  • Grimm E, Bonavida B (1979) Mechanism of cellmediated cytotoxicity at the single cell level. I. Estimation of cytotoxic T lymphocyte frequency and relative lytic efficiency. J Immunol 123:2861–2868

    PubMed  CAS  Google Scholar 

  • Herberman RB (1974) Cell-mediated immunity to tumor cells. In: Klein G, Weinhouse S (eds) Advances in cancer research, vol 19. Academic, New York, pp 107–263

    Google Scholar 

  • Jonges LE, Albertsson P, van Vlierberghe RL et al (2001) The phenotypic heterogeneity of human natural killer cells: presence of at least 48 different subsets in the peripheral blood. Scand J Immunol 53:103–110

    Article  PubMed  CAS  Google Scholar 

  • Konstantinova IV, Fuchs BB (1991) The immune system in space and other extreme conditions. Harwood Academic Publishers, Reading

    Google Scholar 

  • Konstantinova IV, Rykova MP, Lesnyak AT, Antropova EN (1993) Immune changes during long-duration missions. J Leukoc Biol 54(3):189–201

    PubMed  CAS  Google Scholar 

  • Kozlovskaya IB, Grigoriev AI (2004) Russian system of countermeasures on board of the International Space Station (ISS): the first results. Acta Astronaut 55:233–237

    Article  PubMed  Google Scholar 

  • Kozlovskaya IB, Grigoriev AI, Stepantzov VI (1995) Countermeasure of the negative effects of weightlessness on physical systems in long-term space flights. Acta Astronaut 36:661–668

    Article  PubMed  CAS  Google Scholar 

  • Lanier LL, Buck DW, Rhodes L et al (1988) Interleukin 2 activation of natural killer cells rapidly induces the expression and phosphorylation of the Leu-23 activation antigen. J Exp Med 167(5):1572–1585

    Article  PubMed  CAS  Google Scholar 

  • Mackinnon LT (1999) Advances in exercise immunology. Human Kinetics, Champaign, Illinois

    Google Scholar 

  • Meehan R, Whitson P, Sams C (1993) The role of psychoneuroendocrine factors on spaceflight-induced immunological alterations. J Leukoc Biol 54:236–244

    PubMed  CAS  Google Scholar 

  • Mehta SK, Stowe RP, Feiveson AH et al (2000) Reactivation and shedding of cytomegalovirus in astronauts during spaceflight. J Infect Dis 182:1761–1764

    Article  PubMed  CAS  Google Scholar 

  • Mehta SK, Kaur I, Grimm EA et al (2001) Decreased non-MHC-restricted (CD56+) killer cell cytotoxicity after spaceflight. J Appl Physiol 91:1814–1818

    PubMed  CAS  Google Scholar 

  • Mehta SK, Cohrs RJ, Forghani B et al (2005) Stress-induced subclinical reactivation of varicella zoster virus in astronauts. J Med Virol 72:174–179

    Article  Google Scholar 

  • Meshkov D, Rykova M (1995) The natural cytotoxicity in cosmonauts on board space stations. Acta Astronaut 36:719–726

    Article  PubMed  CAS  Google Scholar 

  • Mills PJ, Meck JV, Waters WW et al (2001) Peripheral leukocyte subpopulations and catecholamine levels in astronauts as a function of mission duration. Psychosom Med 63:886–890

    PubMed  CAS  Google Scholar 

  • Orange JS (2008) Formation and function of the lytic of the NK-cell immunoligical synapse. Nat Rev Immunol 8:713–725

    Article  PubMed  CAS  Google Scholar 

  • Orange JS, Ballas ZK (2006) Natural killer cells in human health and disease. Clin Immunol 118:1–10

    Article  PubMed  CAS  Google Scholar 

  • Pedersen BK, Ullum H (1994) NK cell response to physical activity: possible mechanisms of action. Med Sci Sports Exerc 26(2):140–146

    Article  PubMed  CAS  Google Scholar 

  • Pierson DL, Stowe RP, Phillips TM et al (2005) Epstein-Barr virus shedding by astronauts during space flight. Brain Behav Immun 19:235–242

    Article  PubMed  CAS  Google Scholar 

  • Rykova MP, Spirande IV, Zedgenidze MS et al (1981) New high sensitive technique for testing natural killers. Immunologiya N3:88–90 (in Russian)

    Google Scholar 

  • Rykova, MP, Antropova EN, Meshkov DO (2001) Results of Immunological Studies. In: Orbital’naya stantsiya MIR (Mir Space Station), vol 2. Moscow, pp 615

    Google Scholar 

  • Rykova MP, Antropova EN, Larina IM, Morukov BV (2008) Humoral and cellular immunity in cosmonauts after the ISS missions. Acta Astronaut 63:697–705

    Article  Google Scholar 

  • Sonnenfeld G, Shearer WT (2002) Immune function during space flight. Nutrition 18(10):899–903

    Article  PubMed  CAS  Google Scholar 

  • Stowe RP, Mehta SK, Ferrando AA et al (2001a) Immune responses and latent herpesvirus reactivation in spaceflight. Aviat Space Environ Med 72:884–891

    PubMed  CAS  Google Scholar 

  • Stowe RP, Pierson DL, Barrett AD (2001b) Elevated stress hormone levels relate to Epstein-Barr virus reactivation in astronauts. Psychosom Med 63:891–895

    PubMed  CAS  Google Scholar 

  • Stowe RP, Sams CF, Pierson DL (2003) Effects of mission duration on neuroimmune responses in astronauts. Aviat Space Environ Med 74:1281–1284

    PubMed  Google Scholar 

  • Suzui M, Kawai T, Kimura H, Takeda K et al (2004) Natural killer cell lytic activity and CD56dim and CD56bright cell distributions during and after intensive training. J Appl Physiol 96(6):2167–2173

    Article  PubMed  Google Scholar 

  • Tipton CM, Greenleaf JE, Jackson CG (1996) Neuroendocrine and immune system responses with spaceflights. Med Sci Sports Exerc 28:988–998

    Article  PubMed  CAS  Google Scholar 

  • Ullberg M, Jondal M (1981) Recycling and target binding capacity of human natural killer cells. J Exp Med 153:615–628

    Article  PubMed  CAS  Google Scholar 

  • Vivier E, Tomasello E, Baratin M et al (2008) Functions of natural killer cells. Nat Immunol 9(5):503–510

    Article  PubMed  CAS  Google Scholar 

  • Whiteside TL, Herberman RB (1989) The role of natural killer cells in human disease. Clin Immunol Immunopathol 53:227–228

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina Rykova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Morukov, B., Rykova, M., Antropova, E. (2012). NK Cells Assessments: A Thirty-Year-Old History of Immune Stress Interaction in Space. In: Chouker, A. (eds) Stress Challenges and Immunity in Space. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22272-6_11

Download citation

Publish with us

Policies and ethics