Skip to main content

The Transiting Planet

  • Chapter
  • First Online:
The Transits of Extrasolar Planets with Moons

Part of the book series: Springer Theses ((Springer Theses))

  • 540 Accesses

Abstract

The first step in understanding the transit light curve is to define the appropriate coordinate system. In defining the so-called orbital elements, a Cartesian coordinate system is usually adopted. I begin with the simplest reference frame possible, where the planet orbits the star in the \(\hat{x}\)\(\hat{y}\) plane with the star at one focus, defined to be the origin, as shown in Fig.  3.1. By working in the rest frame of the star, the reflex motion is inherently accounted for by the model.

From immemorial antiquity, men have dreamed of a royal road to success-leading directly and easily to some goal that could be reached otherwise only be long approaches and with weary toil. Times beyond number, this dream has proved to be a delusion... Nevertheless, there are ways of approach to unknown territory which lead surprisingly far, and repay their followers richly. There is probably no better example of this than eclipses of heavenly bodies Henry Norris Russell, 1946

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The subscripts “P” and “*” in \(S_{P*}'\) are commutative

  2. 2.

    Some of the subscripts present in the notation employed at this stage of the thesis may seem superfluous, but once moons and occultations are introduced, the value of these subscripts will become apparent

References

  1. L. Euler, Novi Commentarii Academiae Scientiarum, 1st edn. Petropolitanae, 1776

    Google Scholar 

  2. C.D. Murray, A.C.M Correia, Keplerian Orbits and Dynamics. ArXiv e-prints, 2010

    Google Scholar 

  3. C.D. Murray, S.F Dermott, Solar system dynamics. (Cambridge University Press, Cambridge, 1999)

    MATH  Google Scholar 

  4. J.M.A. Danby, Fundamentals of celestial mechanics. (Willmann-Bell, Virginia, 1988)

    Google Scholar 

  5. A. Loeb, A dynamical method for measuring the masses of stars with transiting planets.Astrophys. J. Lett 623, L45–L48 (2005)

    Article  ADS  Google Scholar 

  6. D. Deming, J. Harrington, G. Laughlin, S. Seager, S.B. Navarro, W.C. Bowman, K. Horning, Spitzer transit and secondary eclipse photometry of GJ 436b. Astrophys. J. Lett. 667, L199–L202 (2007)

    Article  ADS  Google Scholar 

  7. B. Gladman, D.D. Quinn, P. Nicholson, R. Rand, Synchronous locking of tidally evolving satellites. Icarus 122(1), 166–192 (1996)

    Article  ADS  Google Scholar 

  8. H.A. Knutson, D. Charbonneau, L.E. Allen, J.J. Fortney, E. Agol, N.B. Cowan, A.P. Showman, C.S. Cooper, S.T. Megeath, A map of the day-night contrast of the extrasolar planet HD 189733b. Nature 447, 183–186 (2007)

    Article  ADS  Google Scholar 

  9. J.W. Barnes, Transit lightcurves of extrasolar planets orbiting rapidly rotating stars. Astrophys. J. 705, 683–692 (2009)

    Article  ADS  Google Scholar 

  10. A. Claret, J. Diaz-Cordoves, A. Gimenez, Linear and non-linear limb-darkening coefficients for the photometric bands R I J H K. Astron. Astrophys. Suppl. 114:247–+ (1995)

    Google Scholar 

  11. A. Claret, A new non-linear limb-darkening law for LTE stellar atmosphere models calculations for - 0 <= log[M/H] <= +1, 2000 K <= Teff <= 50000 K at several surface gravities.. Astron. Astrophys. Suppl. 363, 1081–1190 (2000)

    ADS  Google Scholar 

  12. K. Mandel, E. Agol, Analytic light curves for planetary transit searches. Astrophys. J. Lett 580, L171–L175 (2002)

    Article  ADS  Google Scholar 

  13. F. Pont, R. L. Gilliland, C. Moutou, D. Charbonneau, F. Bouchy, T. M. Brown, M. Mayor,D. Queloz, N. Santos, S. Udry, Hubble space telescope time-series photometry of the planetary transit of HD 189733: no moon, no rings, starspots. Astron. Astrophys. 476, 1347–1355 (2007)

    Article  ADS  Google Scholar 

  14. S. Czesla, K.F. Huber, U. Wolter, S. Schröter, J.H.M.M Schmitt, How stellar activity affects the size estimates of extrasolar planets. Astron. Astrophys. 505, 1277–1282 (2009)

    Article  ADS  Google Scholar 

  15. E. Agol, J. Steffen, R. Sari, W. Clarkson, On detecting terrestrial planets with timing of giant planet transits. MNRAS 359, 567–579 (2005)

    Article  ADS  Google Scholar 

  16. M.J. Holman, N.W Murray, The use of transit timing to detect terrestrial-mass extrasolar planets. Science 307, 1288–1291 (2005)

    Article  ADS  Google Scholar 

  17. T. Borkovits, S. Csizmadia, E. Forgács-Dajka, T. Hegedüs, Transit timing variations in eccentric hierarchical triple exoplanetary systems. I. Long-term (P_2-time-scale) perturbations. ArXiv e-prints, October 2010.

    Google Scholar 

  18. A. Jordán, G.Á Bakos, Observability of the general relativistic precession of periastra in exoplanets. Astrophys. J. 685, 543–552 (2008)

    Article  ADS  Google Scholar 

  19. D.M. Kipping, Investigations of approximate expressions for the transit duration. MNRAS 407, 301–313 (2010)

    Article  ADS  Google Scholar 

  20. P. Sartoretti, J. Schneider, On the detection of satellites of extrasolar planets with the method of transits. Astron. Astrophys. Suppl. 134, 553–560 (1999)

    Article  ADS  Google Scholar 

  21. E.B. Ford, M.J Holman, Using transit timing observations to search for trojans of transiting extrasolar planets. Astrophys. J. Lett. 664, L51–L54 (2007)

    Article  ADS  Google Scholar 

  22. M. Sato, H. Asada, Effects of mutual transits by extrasolar planet-companion systems on light curves. PASJ. 61:L29+ (2009)

    Google Scholar 

  23. G.M. Clemence, The relativity effect in planetary motions. Rev. Mod. Phys. 19, 361–364 (1947)

    Article  ADS  Google Scholar 

  24. C. Hellier, D.R. Anderson, A.C. Cameron, M. Gillon, L. Hebb, P.F.L. Maxted, D. Queloz,B. Smalley, A.H.M.J. Triaud, R.G. West, D.M. Wilson, S.J. Bentley, B. Enoch, K. Horne, J. Irwin, T.A. Lister, M. Mayor, N. Parley, F. Pepe, D.L. Pollacco, D. Segransan, S. Udry, P.J Wheatley, An orbital period of 0.94 days for the hot-Jupiter planet WASP-18b. Nature 460, 1098–1100 (2009)

    Article  ADS  Google Scholar 

  25. C.A. Watson, T.R Marsh, Orbital period variations of hot Jupiters caused by the Applegate effect. MNRAS 405, 2037–2043 (2010)

    ADS  Google Scholar 

  26. L. Hui, S. Seager, Atmospheric lensing and oblateness effects during an extrasolar planetary transit. Asrophys. J. 572, 540–555 (2002)

    Article  ADS  Google Scholar 

  27. J.A. Carter, J.N. Winn, The detectability of transit depth variations due to exoplanetary oblateness and spin precession. Asrophys. J. 716, 850–856 (2010)

    Article  ADS  Google Scholar 

  28. D. Deming, J. Harrington, S. Seager, L.J. Richardson, Strong infrared emission from the extrasolar planet HD 189733b. Asrophys. J. 644, 560–564 (2006)

    Article  ADS  Google Scholar 

  29. D. Charbonneau, H.A. Knutson, T. Barman, L.E. Allen, M. Mayor, S.T. Megeath, D. Queloz, S. Udry, The broadband infrared emission spectrum of the exoplanet HD 189733b. Asrophys. J. 686, 1341–1348 (2008)

    Article  ADS  Google Scholar 

  30. M.R. Swain, G. Tinetti, G. Vasisht, P. Deroo, C. Griffith, J. Bouwman, P. Chen, Y. Yung,A. Burrows, L.R. Brown, J. Matthews, J.F. Rowe, R. Kuschnig, D. Angerhausen, Water, methane, and carbon dioxide present in the dayside spectrum of the exoplanet HD 209458b. Asrophys. J. 704, 1616–1621 (2009)

    Article  ADS  Google Scholar 

  31. D.M. Kipping, G. Tinetti, Nightside pollution of exoplanet transit depths. MNRAS 407, 2589–2598 (2010)

    Article  ADS  Google Scholar 

  32. R. Alonso, M. Auvergne, A. Baglin, M. Ollivier, C. Moutou, D. Rouan, H.J. Deeg, S. Aigrain, J.M. Almenara, M. Barbieri, P. Barge, W. Benz, P. Bordé, F. Bouchy, R. deLaReza, M. Deleuil, R. Dvorak, A. Erikson, M. Fridlund, M. Gillon, P. Gondoin, T. Guillot, A. Hatzes, G. Hébrard, P. Kabath, L. Jorda, H. Lammer, A. Léger, A. Llebaria, B. Loeillet, P. Magain, M. Mayor, T. Mazeh, M. Pätzold, F. Pepe, F. Pont, D. Queloz, H. Rauer, A. Shporer, J. Schneider,B. Stecklum, S. Udry, G. Wuchterl, Transiting exoplanets from the CoRoT space mission. II. CoRoT-Exo-2b: a transiting planet around an active G star. Astron. Asrophys. 482, L21–L24 (2008)

    Article  ADS  Google Scholar 

  33. A. Loeb, Long-term evolution in transit duration of extrasolar planets from magnetic activity in their parent stars. New Astron. 14, 363–364 (2009)

    Article  ADS  Google Scholar 

  34. A. Alapini, S. Aigrain, An iterative filter to reconstruct planetary transit signals in the presence of stellar variability. MNRAS 397, 1591–1598 (2009)

    Article  ADS  Google Scholar 

  35. J.A. Carter, J.N. Winn, Parameter estimation from time-series data with correlated errors:a wavelet-based method and its application to transit light curves. Astrophys. J. 704, 51–67 (2009)

    Article  ADS  Google Scholar 

  36. N.M. Batalha, J. Jenkins, G.S. Basri, W.J. Borucki, D.G. Koch, Stellar variability and its implications for photometric planet detection with Kepler. In: B. Battrick, F. Favata,I. W. Roxburgh, D Galadi (eds.) Stellar Structure and Habitable Planet Finding. volume 485 of ESA, pp. 35-40, Special Publication, January 2002

    Google Scholar 

  37. D.W. Latham, W.J. Borucki, D.G. Koch, T.M. Brown, L.A. Buchhave, G. Basri, N.M. Batalha, D.A. Caldwell, W.D. Cochran, E.W. Dunham, G. Fűrész, T.N. Gautier, J.C. Geary,R.L. Gilliland, S.B. Howell, J.M. Jenkins, J.J. Lissauer, G.W. Marcy, D.G. Monet, J.F. Rowe, D.D Sasselov, Kepler-7b: a transiting planet with unusually low density. Astrophys. J. Lett. 713, L140–L144 (2010)

    Article  ADS  Google Scholar 

  38. G.F. Lewis, Gravitational microlensing of stars with transiting planets. Astron. Astrophys. 380, 292–299 (2001)

    Article  ADS  Google Scholar 

  39. R.R. Rafikov, Stellar proper motion and the timing of planetary transits. Asrtophys. J. 700, 965–970 (2009)

    Article  ADS  Google Scholar 

  40. J.W. Barnes, J.J. Fortney, Transit detectability of ring systems around extrasolar giant planets. Asrtophys. J. 616, 1193–1203 (2004)

    Article  ADS  Google Scholar 

  41. D. Charbonneau, T.M. Brown, R.W. Noyes, R.L. Gilliland, Detection of an extrasolar planet atmosphere. Astrophys. J. 568, 377–384 (2002)

    Article  ADS  Google Scholar 

  42. G. Tinetti, A. Vidal-Madjar, M. -C. Liang, J. -P. Beaulieu, Y. Yung, S. Carey, R.J. Barber, J. Tennyson, I. Ribas, N. Allard, G.E. Ballester, D.K. Sing, F. Selsis, Water vapour in the atmosphere of a transiting extrasolar planet. Nature. 448, 169-171

    Google Scholar 

  43. J.P. Beaulieu, D.M. Kipping, V. Batista, G. Tinetti, I. Ribas, S. Carey, J.A. Noriega-Crespo, C.A. Griffith, G. Campanella, S. Dong, J. Tennyson, R.J. Barber, P. Deroo, S.J. Fossey,D. Liang, M.R. Swain, Y. Yung, N. Allard, Water in HD 209458b’s atmosphere from 3.6 - 8 microns IRAC photometric observations in primary transit. ArXiv e-prints, September 2009

    Google Scholar 

  44. O. Sidis, R. Sari, Transits of Transparent Planets - Atmospheric Lensing Effects. ArXiv e-prints, August 2010

    Google Scholar 

  45. S. Kasuya, M. Honda, R. Mishima, New Observablefor Gravitational Lensing Effects During Transits. ArXiv e-prints, September 2010

    Google Scholar 

  46. D.M. Kipping, Binning is sinning: morphological light-curve distortions due to finite integration time. MNRAS 408, 1758–1769 (2010)

    Article  ADS  Google Scholar 

  47. J.N. Winn, Transits and Occultations. ArXiv e-prints, January 2010

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Kipping .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kipping, D.M. (2011). The Transiting Planet. In: The Transits of Extrasolar Planets with Moons. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22269-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22269-6_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22268-9

  • Online ISBN: 978-3-642-22269-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics