Skip to main content

Time-Resolved FTIR Spectroscopy of pH-Induced Aggregation of Peptides

  • Chapter
  • First Online:
Protein Folding and Misfolding

Abstract

Reaction-induced infrared difference spectroscopy is a sensitive method to detect absorbance changes that accompany biomolecular reactions, even if they are very small. One of the ways to trigger reactions in the infrared cuvette is the use of caged compounds, photosensitive molecules that release a desired effector molecule when irradiated with near-UV light, and experiments with caged nucleotides and the sarcoplasmic reticulum Ca2+-ATPase are used to introduce the methodology. A caged sulfate, which can be used to rapidly acidify protein or peptide samples in order to induce unfolding and misfolding, is discussed in detail. Applications described are the partial unfolding of myoglobin and the aggregation of the Alzheimers peptide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Barth, N. Bezlyepkina, J. Biol. Chem. 279, 51888 (2004)

    Article  Google Scholar 

  2. M.S. Braiman, K.J. Rothschild, Annu. Rev. Biophys. Biophys. Chem. 17, 541 (1988)

    Article  Google Scholar 

  3. C. Zscherp, A. Barth, Biochemistry 40, 1875 (2001)

    Article  Google Scholar 

  4. H. Fabian, W. Mäntele, in Infrared Spectroscopy of Proteins, ed. by J.M. Chalmers, P.R. Griffiths (Wiley, Chichester, 2002), p. 3399

    Google Scholar 

  5. C. Berthomieu, R. Hienerwadel, Photosynth. Res. 101, 157 (2009)

    Article  Google Scholar 

  6. F. Siebert, W. Mäntele, W. Kreutz, Biophys. Struct. Mech. 6, 139 (1980)

    Article  Google Scholar 

  7. K.J. Rothschild, M. Zagaeski, W.A. Cantore, Biochem. Biophys. Res. Commun. 103, 483 (1981)

    Article  Google Scholar 

  8. J.O. Alben, D. Beece, S.F. Bowne, L. Eisenstein, H. Frauenfelder, D. Good, M.C. Marden, P.P. Moh, L. Reinisch, A.H. Reynolds, K.T. Yue, Phys. Rev. Lett. 44, 1157 (1980)

    Article  ADS  Google Scholar 

  9. R. Vogel, F. Siebert, Curr. Opin. Chem. Biol. 4, 518 (2000)

    Article  Google Scholar 

  10. K. Gerwert, Curr. Opin. Struct. Biol. 3, 769 (1993)

    Article  Google Scholar 

  11. T. Noguchi, Photosynth. Res. 91, 59 (2007)

    Article  Google Scholar 

  12. A. Barth, W. Mäntele, W. Kreutz, FEBS Lett. 277, 147 (1990)

    Article  Google Scholar 

  13. V. Cepus, C. Ulbrich, C. Allin, A. Troullier, K. Gerwert, Methods Enzymol. 291, 223 (1998)

    Article  Google Scholar 

  14. A. Barth, in Dynamic Studies in Biology, ed. by M. Goeldner, R. Givens (Wiley-VCH, Weinheim, 2005), pp. 369

    Chapter  Google Scholar 

  15. J.H. Kaplan, B. Forbush, J.F. Hoffman, Biochemistry 17, 1929 (1978)

    Article  Google Scholar 

  16. M. Goeldner, R. Givens (eds.) Dynamic Studies in Biology(Wiley-VCH, Weinheim, 2005)

    Google Scholar 

  17. J. White, K. Drabble, C.W. Wharton, Biochem. J. 306, 843 (1995)

    Google Scholar 

  18. H. Fabian, D. Naumann, Methods 34, 28 (2004)

    Article  Google Scholar 

  19. E. Goormaghtigh, V. Raussens, J.-M. Ruysschaert, Biochim. Biophys. Acta 1422, 105 (1999)

    Google Scholar 

  20. P.R. Rich, M. Iwaki, Mol. BioSyst. 3, 398 (2007)

    Article  Google Scholar 

  21. K. Fahmy, Biophys. J. 75, 1306 (1998)

    Article  ADS  Google Scholar 

  22. G. Panick, R. Malessa, R. Winter, G. Rapp, K.J. Frye, C.A. Royer, J. Mol. Biol. 275, 389 (1998)

    Article  Google Scholar 

  23. D. Moss, E. Nabedryk, J. Breton, W. Mäntele, Eur. J. Biochem. 187, 565 (1990)

    Article  Google Scholar 

  24. M. Lübben, K. Gerwert, FEBS Lett. 397, 303 (1996)

    Article  Google Scholar 

  25. M. Liu, E.-L. Karjalainen, A. Barth, Biophys. J. 88, 3615 (2005)

    Article  Google Scholar 

  26. A. Barth, K. Hauser, W. Mäntele, J.E.T. Corrie, D.R. Trentham, J. Am. Chem. Soc. 117, 10311 (1995)

    Article  Google Scholar 

  27. A. Barth, J.E.T. Corrie, M.J. Gradwell, Y. Maeda, W. Mäntele, T. Meier, D. R. Trentham, J. Am. Chem. Soc. 119, 4149 (1997)

    Article  Google Scholar 

  28. A. Barth, Spectroscopy 22, 63 (2008)

    ADS  Google Scholar 

  29. M. Liu, A. Barth, J. Biol. Chem. 278, 10112 (2003)

    Article  Google Scholar 

  30. M. Liu, A. Barth, Biopolymers (Biospectroscopy) 67, 267 (2002)

    Google Scholar 

  31. C. Toyoshima, T. Mizutani, Nature 430, 529 (2004)

    Article  ADS  Google Scholar 

  32. T.L.-M. Sørensen, J.V. Møller, P. Nissen, Science 304, 1672 (2004)

    Article  ADS  Google Scholar 

  33. M. Liu, A. Barth, J. Biol. Chem. 279, 49902 (2004)

    Article  Google Scholar 

  34. M. Liu, M. Krasteva, A. Barth, Biophys. J. 89, 4352 (2005)

    Article  Google Scholar 

  35. J. Andersson, A. Barth, Biopolymers 82, 353 (2006)

    Article  Google Scholar 

  36. M. Schwörer, J. Wirz, Helv. Chim. Acta 84, 1441 (2001)

    Article  Google Scholar 

  37. G. Wettermark, E.D. Black, L. Dogliotti, Photochem. Photobiol. 4, 229 (1965)

    Article  Google Scholar 

  38. Y.V. Il’ichev, J. Wirz, J. Phys. Chem. A 104, 7856 (2000)

    Google Scholar 

  39. S. Khan, F. Castellano, J.L. Spudich, J.A. McCray, R.S. Goody, G.P. Reid, D.R. Trentham, Biophys. J. 65, 2368 (1993)

    Article  Google Scholar 

  40. G. Bonetti, A. Vecli, C. Viappiani, Chem. Phys. Lett. 269, 268 (1997)

    Article  ADS  Google Scholar 

  41. S. Abbruzzetti, C. Viappiani, J.R. Small, L.J. Libertini, E.W. Small, Biophys. J. 79, 2714 (2000)

    Article  Google Scholar 

  42. K. Janko, J. Reichert, Biochim. Biophys. Acta 905, 409 (1987)

    Article  Google Scholar 

  43. M. Gutman, D. Huppert, E. Pines, J. Am. Chem. Soc. 103, 3709 (1981)

    Article  Google Scholar 

  44. R.M.D. Nunes, M. Pineiro, L.G. Arnaut, J. Am. Chem. Soc. 131, 9456 (2009)

    Article  Google Scholar 

  45. T.P. Causgrove, R.B. Dyer, Chem. Phys. 323, 2 (2006)

    Article  ADS  Google Scholar 

  46. D.D. Perrin, Ionisation Constants of Inorganic Acids and Bases in Aqueous Solution, 2nd edn. (Pergamon, Oxford, 1982)

    Google Scholar 

  47. A. Barth, J.E.T. Corrie, Biophys. J. 83, 2864 (2002)

    Article  ADS  Google Scholar 

  48. S. Abbruzzetti, S. Sottini, C. Viappiani, J.E.T. Corrie, J. Am. Chem. Soc. 127, 9865 (2005)

    Article  Google Scholar 

  49. J.E.T. Corrie, V.R.N. Munasinghe, D.R. Trentham, A. Barth, Photochem. Photobiol. Sci. 7, 84 (2008)

    Article  Google Scholar 

  50. N.B. Colthup, L.H. Daly, S.E. Wiberley, Introduction to Infrared and Raman Spectroscopy, 2nd edn. (Academic Press, New York, 1975)

    Google Scholar 

  51. J.T. Sage, D. Morikis, P.M. Champion, Biochemistry 30, 1227 (1991)

    Article  Google Scholar 

  52. Z. Chi, S.A. Asher, Biochemistry 37, 2865 (1998)

    Article  Google Scholar 

  53. V. Palaniappan, D.F. Bocian, Biochemistry 33, 14264 (1994)

    Article  Google Scholar 

  54. S. Abbruzzetti, S. Sottini, C. Viappiani, J.E.T. Corrie, Photochem. Photobiol. Sci. 6, 621 (2006)

    Article  Google Scholar 

  55. J. Hardy, D.J. Selkoe, Science 297, 353 (2002)

    Article  ADS  Google Scholar 

  56. D.J. Selkoe, Nature 426, 900 (2006)

    Article  ADS  Google Scholar 

  57. F. Chiti, C.M. Dobson, Annu. Rev. Biochem. 75, 333 (2006)

    Article  Google Scholar 

  58. W.L. Klein, G.A. Krafft, C.E. Finch, Trends Neurosci. 24, 219 (2001)

    Article  Google Scholar 

  59. D.J. Selkoe, Annu. Rev. Neurosci. 17, 489 (1994)

    Article  Google Scholar 

  60. S.H. Pasternak, J.W. Callahan, D.J. Mahuran, J. Alzheimers Dis. 6, 53 (2004)

    Google Scholar 

  61. S.J. Wood, B. Maleeff, T. Hart, R. Wetzel, J. Mol. Biol. 256, 870 (1996)

    Article  Google Scholar 

  62. D.A. Kirschner, H. Inouye, L.K. Duffy, A. Sinclair, M. Lind, D.J. Selkoe, Proc. Natl. Acad. Sci. U.S.A. 84, 6953 (1987)

    Article  ADS  Google Scholar 

  63. K. Ma, E.L. Clancy, Y.B. Zhang, D.G. Ray, K. Wollenberg, M.G. Zagorski, J. Am. Chem. Soc. 121, 8698 (1999)

    Article  Google Scholar 

  64. P.E. Fraser, D.R. McLachlan, W.K. Surewicz, C.A. Mizzen, A.D. Snow, J.T. Nguyen, D.A. Kirschner, J. Mol. Biol. 244, 64 (1994)

    Article  Google Scholar 

  65. J. Danielsson, R. Pierattelli, L. Banci, A. Gräslund, FEBS J. 274, 46 (2007)

    Article  Google Scholar 

  66. M. Cortijo-Arellano, J. Ponce, N. Durany, J. Cladera, Biochem. Biophys. Res. Commun. 368, 238 (2008)

    Article  Google Scholar 

  67. S.M. Decatur, Acc. Chem. Res. 39, 169 (2006)

    Article  Google Scholar 

  68. M.R. Nilsson, C.M. Dobson, Biochemistry 42, 375 (2003)

    Article  Google Scholar 

  69. A. Barth, Biochim. Biophys. Acta 1767, 1073 (2007)

    Article  Google Scholar 

  70. N. Benseny-Cases, M. Cocera, J. Cladera, Biochem. Biophys. Res. Commun. 361, 916 (2007)

    Article  Google Scholar 

  71. S.A. Petty, S.M. Decatur, J. Am. Chem. Soc. 127, 13488 (2005)

    Article  Google Scholar 

  72. M.R. Nilsson, Methods 34, 151 (2004)

    Article  Google Scholar 

  73. K. Matsuzaki, C. Horikiri, Biochemistry 38, 4137 (1999)

    Article  Google Scholar 

  74. A. Perálvarez-Marín, A. Barth, A. Gräslund, J. Mol. Biol. 379, 589 (2008)

    Article  Google Scholar 

  75. H. Susi, N. Timasheff, L. Stevens, J. Biol. Chem. 242, 5460 (1967)

    Google Scholar 

  76. S.N. Timasheff, H. Susi, L. Stevens, J. Biol. Chem. 242, 5467 (1967)

    Google Scholar 

  77. J.L.R. Arrondo, A. Muga, J. Castresana, F.M. Goñi, Prog. Biophys. Mol. Biol. 59, 23 (1993)

    Article  Google Scholar 

  78. M. Jackson, H.H. Mantsch, Crit. Rev. Biochem. Mol. Biol. 30, 95 (1995)

    Article  Google Scholar 

  79. E. Goormaghtigh, V. Cabiaux, J.-M. Ruysschaert, Subcell. Biochem. 23, 405 (1994)

    Google Scholar 

  80. N. Yamada, K. Ariga, M. Naito, K. Matsubara, E. Koyama, J. Am. Chem. Soc. 120, 12192 (1998)

    Article  Google Scholar 

  81. P. Chitnumsub, W.R. Fiori, H.A. Lashuel, H. Diaz, J.W. Kelly, Bioorg. Med. Chem. 7, 39 (1999)

    Article  Google Scholar 

  82. Y.N. Chirgadze, N.A. Nevskaya, Biopolymers 15, 627 (1976)

    Article  Google Scholar 

  83. J. Kubelka, T.A. Keiderling, J. Am. Chem. Soc. 123, 12048 (2001)

    Article  Google Scholar 

  84. J.D. Harper, P. T. Lansbury, Annu. Rev. Biochem. 66, 385 (1997)

    Article  Google Scholar 

  85. S. Abbruzzetti, M. Carcelli, P. Pelagatti, D. Rogolino, C. Viappiani, Chem. Phys. Lett. 344, 387 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Barth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Corrie, J.E.T., Perálvarez-Marín, A., Barth, A. (2012). Time-Resolved FTIR Spectroscopy of pH-Induced Aggregation of Peptides. In: Fabian, H., Naumann, D. (eds) Protein Folding and Misfolding. Biological and Medical Physics, Biomedical Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22230-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22230-6_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22229-0

  • Online ISBN: 978-3-642-22230-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics