Skip to main content

Introduction to Organic Vapor Phase Deposition (OVPD) Technology for Organic (Opto-)electronics

  • Chapter
  • First Online:

Part of the book series: NanoScience and Technology ((NANO))

Abstract

In this chapter, the organic vapor phase deposition (OVPD) technology combined with the Close Coupled Showerhead (CCS) technology for the fabrication of sophisticated opto-electronic organic devices based on open literature will be shortly reviewed. Typically, organic (opto-)electronic devices are fabricated by vacuum thermal evaporation (VTE), which is in contrast with the OVPD technology. The deposition of single organic films, the morphology control by OVPD and the proposed benefits of mixing organic materials, and applying non-sharp interfaces for the overall organic light emitting diode (OLED) performance will be discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. C.W. Tang, S.A. VanSlyke, Appl. Phys. Lett. 51, 913 (1987)

    Article  ADS  Google Scholar 

  2. L.S. Hung, C.H. Chen, Mater. Sci. Eng. R 39, 143 (2000)

    Google Scholar 

  3. S.R. Forrest, Chem. Rev. 97, 1793 (1997)

    Article  Google Scholar 

  4. S.R. Forrest, MRS Bull. 30, 28 (2005)

    Article  Google Scholar 

  5. B.D’Andrade, V. Adamovich, R. Hewitt, M. Hack, J.J. Brown, SPIE 5937, 87 (2005)

    ADS  Google Scholar 

  6. J. Shinar, Organic Light-Emitting Devices: A Survey, (Springer, New York, USA, 2004)

    Google Scholar 

  7. http://www.lumiblade.com; http://www.osram-os.com

  8. J. Kido, M. Kimura, K. Nagai, Science 267, 1332–1334 (1995)

    Article  ADS  Google Scholar 

  9. M. Hack, International Summer School on OLEDs, Organic Electronics: from Lab to Home, Krutyn, Poland, 2–8 June 2009; Organised by oled100.eu

    Google Scholar 

  10. http://www.universaldisplay.com

  11. S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, K. Leo, Nature 459, 08003 (2009)

    Article  Google Scholar 

  12. H. Kanno, Y. Hamada, N. Matsusue, H. Takahashi, R. Nishikawa, K. Mameno, SPIE Conference on Organic Light-Emitting Materials and Devices VII; San Diego, California, USA, 4–6 Aug 2003

    Google Scholar 

  13. B.W. D’Andrade, J.Y. Tsai, C. Lin, M.S. Weaver, P.B. Mackenzie, J.J. Brown, SID 2007 (Long Beach, CA, USA, 20–25 May 2007)

    Google Scholar 

  14. N. Meyer, M. Rusu, S. Wiesner, S. Hartmann, D. Keiper, M. Schwambera, M. Gersdorff, M. Kunat, M. Heuken, W. Kowalsky, M.C.h. Lux-Steiner, Eur. Phys. J. Appl. Phys. 46, 12506 (2009)

    Google Scholar 

  15. J. Kido, Plastic Electronic 2007 (Frankfurt, Germany, 7.10.n2007)

    Google Scholar 

  16. N. Meyer, M. Heuken, Review About Organic Vapor Phase Deposition for Organic Electronics, ed. by H. Klauk (Wiley-VCH, Weinheim, Germany, 2006) ISBN: 9783527312641, pp. 203–232

    Google Scholar 

  17. B. Marheineke, SPIE Proc. 5961, 3 (2005)

    ADS  Google Scholar 

  18. M. Shtein, H.F. Gossenberger, J.B. Benzinger, S.R. Forrest, J. Appl. Phys. 89(2), 1470 (2001)

    Article  ADS  Google Scholar 

  19. P.E. Burrows, S.R. Forrest, L.S. Sapochak, J. Schwartz, P. Fenter, T. Buma, V.S. Ban J.L. Forrest, J. Crystal Growth, 156, 91 (1995)

    Article  ADS  Google Scholar 

  20. N. Meyer, M. Rusu, S. Wiesner, S. Hartmann, D. Keiper, M. Schwambera, M. Gersdorff, M. Kunat, M. Heuken, W. Kowalsky, M.C.h. Lux-Steiner, Eur. Phys. J. Appl. Phys. 46(1), 12506, (2009)

    Google Scholar 

  21. T. Kato, T. Mori, T. Mizutani, Thin Solid Films 393, 109 (2001)

    Article  ADS  Google Scholar 

  22. F. Yang, M. Shtein, S.R. Forrest, J. Appl. Phys. 98, 014906 (2005)

    Article  ADS  Google Scholar 

  23. S.Y. Yang, K. Shin, C.E. Park, Adv. Funct. Mater. 15, 1806–1814 (2005)

    Article  Google Scholar 

  24. P. Niyamakom, Phd thesis, RWTH, Aachen, Germany, 2008

    Google Scholar 

  25. Project report. Förderkennzeichen BMBF 13N8993 (2009) http://edok01.tib.uni-hannover.de/edoks/e01fb09/610461389l.pdf

  26. M. Rusu, J. Gasiorowski, S. Wiesner, D. Keiper, N. Meyer, M. Heuken, K. Fostiropoulos, M.C.h. Lux-Steiner, EMRS Conference, Strasbourg, France, 26–30 May 2008

    Google Scholar 

  27. M. Rusu, J. Gasiorowski, S. Wiesner, D. Keiper, N. Meyer, M. Heuken, K. Fostiropoulos, M.C.h. Lux-Steiner, (2008): 23rd EUPVSEC, Valencia, Spain, 1–5 September, 2008: WIP-Renewable Energies, ISBN: 3–936338–24–8, pp. 679–681

    Google Scholar 

  28. H. Hoppe, N.S. Sariciftci, J. Mater. Res. 19(7), 1924–1945 (2004)

    Google Scholar 

  29. C. Himcinschi, S. Hartmann, A. Janssen, N. Meyer, M. Friedrich, W. Kowalsky, D.R.T. Zahn, M. Heuken, J. Cryst. Growth 275, e1035 (2005)

    Article  ADS  Google Scholar 

  30. M. Schwambera, D. Keiper, N. Meyer, M. Heuken, F. Lindla, M. Bösing, C. Zimmermann, F. Jessen, H. Kalisch, R.H. Jansen, P.v. Gemmern, D. Bertram, IMID 2009, KINEX Seoul, Korea, 13–15 October 2009

    Google Scholar 

  31. M. Bösing, C. Zimmermann, F. Lindla, F. Jessen, P. van Gemmern, D. Bertram, D. Keiper, N. Meyer, M. Heuken, H. Kalisch, R.H. Jansen, 2009 Material Research Society (MRS) Spring eeting, San Francisco, CA, USA, 13–17 April 2009

    Google Scholar 

  32. F. Lindla, M. Bösing, C. Zimmermann, F. Jessen, P. van Gemmern, D. Bertram, D. Keiper, N. Meyer, M. Heuken, H. Kalisch, R.H. Jansen, Material Research Society (MRS) Spring Meeting, (San Francisco, CA, USA, 13–17 April 2009)

    Google Scholar 

  33. F. Lindla, M. Bösing, C. Zimmermann, F. Jessen, P. van Gemmern, D. Bertram, D. Keiper, N. Meyer, M. Heuken, H. Kalisch, R.H. Jansen, Appl. Phys. Lett., 95, 213305 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was the result of a team effort from the groups at AIXTRON AG, Philips BU OLED, Aachen, Technische Hochschule (TU) Braunschweig, and the Rheinisch Westfälische Technische Hochschule (RWTH), Aachen, which performed most of the work reported in this article.

Part of this work was financially supported by the Federal Ministry of Education and Research in Germany (BMBF, No. 001BD153; No. 13N8650, No. 13N8993, and BMU 0329927B).

OVPD{ $Ⓡ$} technology has been exclusively licensed to AIXTRON from Universal Display Corporation, Ewing, NJ, USA, for equipment manufacture. OVPD{ $Ⓡ$} technology is based on an invention by Professor Stephen R. Forrest et al. at Princeton University, USA, which was exclusively licensed to UDC, AIXTRON, and UDC have jointly developed and qualified OVPD{ $Ⓡ$} pre-production equipment.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Keiper, D., Meyer, N., Heuken, M. (2012). Introduction to Organic Vapor Phase Deposition (OVPD) Technology for Organic (Opto-)electronics. In: Logothetidis, S. (eds) Nanostructured Materials and Their Applications. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22227-6_8

Download citation

Publish with us

Policies and ethics