Skip to main content

Nanotechnology: Principles and Applications

  • Chapter
  • First Online:
Nanostructured Materials and Their Applications

Part of the book series: NanoScience and Technology ((NANO))

Abstract

Nanotechnology is one of the leading scientific fields today since it combines knowledge from the fields of Physics, Chemistry, Biology, Medicine, Informatics, and Engineering. It is an emerging technological field with great potential to lead in great breakthroughs that can be applied in real life. Novel nano- and biomaterials, and nanodevices are fabricated and controlled by nanotechnology tools and techniques, which investigate and tune the properties, responses, and functions of living and non-living matter, at sizes below 100 nm. The application and use of nanomaterials in electronic and mechanical devices, in optical and magnetic components, quantum computing, tissue engineering, and other biotechnologies, with smallest features, widths well below 100 nm, are the economically most important parts of the nanotechnology nowadays and presumably in the near future. The number of nanoproducts is rapidly growing since more and more nanoengineered materials are reaching the global market The continuous revolution in nanotechnology will result in the fabrication of nanomaterials with properties and functionalities which are going to have positive changes in the lives of our citizens, be it in health, environment, electronics or any other field. In the energy generation challenge where the conventional fuel resources cannot remain the dominant energy source, taking into account the increasing consumption demand and the CO2 emissions alternative renewable energy sources based on new technologies have to be promoted. Innovative solar cell technologies that utilize nanostructured materials and composite systems such as organic photovoltaics offer great technological potential due to their attractive properties such as the potential of large-scale and low-cost roll-to-roll manufacturing processes The advances in nanomaterials necessitate parallel progress of the nanometrology tools and techniques to characterize and manipulate nanostructures. Revolutionary new approaches in nanometrology will be required in the near future and the existing ones will have to be improved in terms of better resolution and sensitivity for elements and molecular species. Finally, the development of specific guidance for the safety evaluation of nanotechnology products is strongly recommended.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K.D. Sattler, Handbook of Nanophysics, Principles and Methods (CRC, New York, 2010)

    Google Scholar 

  2. B. Bhushan, Handbook of Nanotechnology (Springer, Berlin, 2004)

    Book  Google Scholar 

  3. C. Huang, A. Notten, N. Rasters, J. Technol. Transf. 36, 145–172 (2011)

    Google Scholar 

  4. F. Simonis S. Schilthuizen, Nanotechnology Innovation Opportunities For Tomorrow’s Defence (TNO Science & Industry, 2006)

    Google Scholar 

  5. K. Park, Nanotechnology: what it can do for drug delivery, perspective. J. Control. Release 120, 1–3 (2007)

    Article  Google Scholar 

  6. W.H. de Jong, B. Roszek, R.E. Geertsma, Nanotechnology in medical applications: possible risks for human health. RIVM report 265001002, 2005 (RIVM, National Institute for Public Health and the Environment, Bilthoven, 2005)

    Google Scholar 

  7. Nanotechnology, biotechnology, information technology & cognitive science – NBIC developments

    Google Scholar 

  8. I. Freestone, N. Meeks, M. Sax, C. Higgitt, Gold Bull. 40(4),270 (2007)

    Google Scholar 

  9. British Museum, Lycurgus cup, http://www.britishmuseum.org

  10. P. Mulvaney et al., MRS Bull. 26, 1009 (2001)

    Google Scholar 

  11. A.G. Davies, J.M.T. Thompson, Advances in Nanoengineering Electronics, Materials and Assembly. Royal Society Series on Advances in Science 3, Imperial College Press, London, 2007, Page 3 (Introduction, G. Davies, School of Electronic and Electrical Engineering, University of Leeds, Leeds, UK).

    Google Scholar 

  12. H.S. Mansur, Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2, 113–129 (2010)

    Article  Google Scholar 

  13. http://www.hyphotech.com

  14. K. Autumn, Y.A. Liang, S.T. Hsieh, W. Zesch, W.P. Chan, T.W. Kenny, R. Fearing, R.J. Full, Nature 405, 681–685 (2000)

    Article  ADS  Google Scholar 

  15. E. Arzt, S. Gorb, R. Spolenak, From micro to nano contacts in biological attachment devices. Proc. Natl. Acad. Sci. U.S.A. 100(19), 10603–10606 (2003)

    Article  ADS  Google Scholar 

  16. J.V. Barth, G. Costantini, K. Kern, Nature 437, 671–679 (2005)

    Article  ADS  Google Scholar 

  17. R.G. Nuzzo, D.L. Allara, J. Am. Chem. Soc. 105, 4481–4483 (1983)

    Article  Google Scholar 

  18. Asemblon, Inc., Self-Assembling Molecules, http://www.asemblon.com/

  19. Moore’s Law past 32 nm: Future Challenges in Device Scaling, Kelin Kuhn/IWCE/Beijing/2009

    Google Scholar 

  20. http://www.intel.com

  21. S. Anders, M.G. Blamire, F.I.m. Buchholz, D.G. Crétéd, R. Cristiano, P. Febvre, L. Fritzsch, A. Herr, E. Il’ichev, J. Kohlmann, J. Kunert, H.G. Meyer, J. Niemeyer, T. Ortlepp, H. Rogalla, T. Schurig, M. Siegel, R. Stolz, E. Tarte, H.J.M. ter Brake, H. Toepfer, J.C. Villegier, A.M. Zagoskin, A.B. Zorin, Physica C 470, 2079–2126 (2010)

    Google Scholar 

  22. G.F. Cerofolini et al., Microelectron. Eng. 81, 405–419 (2005)

    Article  Google Scholar 

  23. N. Weste, K. Eshraghian, Principles of CMOS VLSI Design: A Systems Perspectives (Addison-Wesley, Boston, 1993)

    Google Scholar 

  24. P. Qi, A. Javey, M. Rolandi, Q. Wang, E. Yenilmez, H. Dai, J. Am. Chem. Soc. 126, 11774–11775 (2004)

    Article  Google Scholar 

  25. J.K. Gimzewski, Nanoelectronics, in McGraw-Hill Yearbook of Science and Technology 2000 (McGraw-Hill, New York, 1999), 274–278

    Google Scholar 

  26. D. Vuillaume, Molecular nanoelectronics, Proc. IEEE 98, 12, 2111–2123 (2010)

    Article  Google Scholar 

  27. S.E. Lyshevski Nano and Molecular Electronics Handbook (CRC, New York, 2007)

    Google Scholar 

  28. A.F. Ghoniem, Prog. Energy Combust. Sci. 37, 15–51 (2011)

    Article  Google Scholar 

  29. The International Energy Agency, World Energy Outlook, http://www.worldenergyoutlook.org/

  30. B. Parida, S. Iniyan R. Goic, Renew. Sustain. Energy Rev. 15, 1625–1636 (2011)

    Article  Google Scholar 

  31. National Renewable Energy Laboratory, NREL, http://www.nrel.gov/solar/

  32. M. Grätzel, Phil. Trans. R. Soc. A 365, 993–1005 (2007)

    Article  ADS  Google Scholar 

  33. G. Yu, J. Gao, J.C. Hummelen, F. Wudl, A.J. Heeger, Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor–acceptor heterojunctions. Science 270, 1789–1795 (1995)

    Article  ADS  Google Scholar 

  34. S. Logothetidis, Mater. Sci. Eng. B 152, 96–104 (2008)

    Article  Google Scholar 

  35. R.J. Hamers, Flexible electronic futures. Nature 412, 489 (2001)

    Google Scholar 

  36. F. Padinger, R.S. Rittberger N.S. Sariciftci, Adv. Funct. Mater. 13(2) (2003)

    Google Scholar 

  37. S.R. Forrest, The path to ubiquitous and low cost organic electronic appliances on plastic. Nature 428, 911 (2004)

    Article  ADS  Google Scholar 

  38. S.E. Shaheen, D.S. Ginley, Photovoltaics for the Next Generation: Organic-Based Solar Cells, Dekker Encyclopedia of Nanoscience and Nanotechnology, Schwarz, Contescu, and Putyera, Eds.; Marcel Dekker, Inc.: New York, 2879–2895 (2004)

    Google Scholar 

  39. C. Contescu K. Putyera, Dekker Encyclopedia of Nanoscience and Nanotechnology 2nd edn. (CRC, New York, 2009)

    Google Scholar 

  40. P.G. Nicholson, F.A. Castro, Nanotechnology 21, 492001 (2010)

    Article  Google Scholar 

  41. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano H. Hosono, Nature 432, 488(2004)

    Article  ADS  Google Scholar 

  42. D.J. Whitehouse, The Handbook of Surface and Nanometrology (Taylor & Francis, New York, 2002)

    Book  Google Scholar 

  43. V. Karagkiozaki, S. Logothetidis, N. Kalfagiannis et al, Atomic force microscopy probing platelet activation behavior on titanium nitride nanocoatings for biomedical applications. Nanomed. Nanotechnol. Biol. Med. 5(1), 64–72 (2009)

    Article  Google Scholar 

  44. S. Lousinian, N. Kalfagiannis, S. Logothetidis, Albumin and fibrinogen adsorption on boron nitride and carbon-based thin films. Mater. Sci. Eng. B 152 1–3, 12–15 (2008)

    Google Scholar 

  45. S. Lousinian, S. Logothetidis, In-situ and real-time protein adsorption study by spectroscopic ellipsometry. Thin Solid Films 516, 8002–8008 (2008)

    Article  ADS  Google Scholar 

  46. R.M.A. Azzam N.M. Bashara, Ellipsometry and Polarized Light (North Holland, New York, 1977)

    Google Scholar 

  47. S. Logothetidis, Thin Films Handbook: Processing, Characterization and Properties (Academic, New York, 2001) p. 227

    Google Scholar 

  48. L.V. Keldysh, D.A. Kirzhnits, A.A. Maradudin, The Dielectric Function Of Condensed Systems (North-Holland, New York)

    Google Scholar 

  49. Y. Kitano, Y. Kinoshita, T. Ashida, Morphology and crystal-structure of an a axis oriented, highly crystalline poly(ethylene-terephthalate). Polymer 36, 10, 1989 (1995)

    Google Scholar 

  50. R.K. Leach, R. Boyd, T. Burke, H.U. Danzebrink, K. Dirscherl, T. Dziomba, M. Gee, L. Koenders, V. Morazzani, A. Pidduck, D. Roy, W.E.S. Unger and A. Yacoot, Nanotechnology 22, 062001 (15.(2011)

    Google Scholar 

  51. K.J. Yi, X.N. He, Y.S. Zhou et al., Tip-enhanced near-field Raman spectroscopy with a scanning tunneling microscope and side-illumination optics. Rev. Sci. Instrum. 79(7) 073706 (2008)

    Google Scholar 

  52. J. Steidtner, B. Pettinger Tip-enhanced Raman spectroscopy and microscopy on single dye molecules with 15 nm resolution. Phys. Rev. Lett. 100, 236101 (2008)

    Google Scholar 

  53. M. Motohashi, N. Hayazawa, A. Tarun et al, Depolarization effect in reflection-mode tip-enhanced Raman scattering for Raman active crystals. J. Appl. Phys. 103(3), 034309 (2008)

    Google Scholar 

  54. http://www.ntmdt.com/

  55. S.S. Kharintsev, G.G. Hoffmann, P.S. Dorozhkin, G. de With J. Loos, Nanotechnology 18, 315502 (2007)

    Article  ADS  Google Scholar 

  56. W. Zhang, B.S. Yeo, T. Schmid et al., Single molecule tip-enhanced Raman spectroscopy with silver tips. J. Phys. Chem. C 111(4) 1733–1738 (2007)

    Article  Google Scholar 

  57. B.S. Yeo, T. Schmid, W. Zhang et al., Towards rapid nanoscale chemical analysis using tip-enhanced Raman spectroscopy with Ag-coated dielectric tips. Anal. Bioanal. Chem. 387(8) 2655–2662 (2007)

    Article  Google Scholar 

  58. L.S.C. Pingree, O.G. Reid D.S. Ginger, Adv. Mater. 21, 19–28 (2009)

    Article  Google Scholar 

  59. J. Kennedy in The Yearbook of Nanotechnology and Society, ed. by E Fisher, C Selin JM. Wetmore Nanotechnology: the Future is Coming Sooner Than You Think, Yearbook of Nanotechnology in Society vol 1 (Springer, New York, 2008), pp. 1–21

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Logothetidis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Logothetidis, S. (2012). Nanotechnology: Principles and Applications. In: Logothetidis, S. (eds) Nanostructured Materials and Their Applications. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22227-6_1

Download citation

Publish with us

Policies and ethics