Minimalist Tree Languages Are Closed Under Intersection with Recognizable Tree Languages

  • Gregory M. Kobele
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6736)


Minimalist grammars are a mildly context-sensitive grammar framework within which analyses in mainstream chomskyian syntax can be faithfully represented. Here it is shown that both the derivation tree languages and derived tree languages of minimalist grammars are closed under intersection with regular tree languages. This allows us to conclude that taking into account the possibility of ‘semantic crashes’ in the standard approach to interpreting minimalist structures does not alter the strong generative capacity of the formalism. In addition, the addition to minimalist grammars of complexity filters is easily shown using a similar proof method to not change the class of derived tree languages.


Lexical Item Derivation Tree Selectee Feature Tree Automaton Tree Language 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Stabler, E.P.: Derivational minimalism. In: Retoré, C. (ed.) LACL 1996. LNCS (LNAI), vol. 1328, pp. 68–95. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  2. 2.
    Thatcher, J.W.: Characterizing derivation trees of context-free grammars through a generalization of finite automata theory. Journal of Computer and System Sciences 1(4), 317–322 (1967)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Koopman, H.: On restricting recursion and the form of syntactic representations. In: Speas, P., Roeper, T. (eds.) Recursion. Oxford University Press, Oxford (to appear) Google Scholar
  4. 4.
    Heim, I., Kratzer, A.: Semantics in Generative Grammar. Blackwell Publishers, Malden (1998)Google Scholar
  5. 5.
    Kobele, G.M., Retoré, C., Salvati, S.: An automata theoretic approach to minimalism. In: Rogers, J., Kepser, S. (eds. Proceedings of the Workshop Model-Theoretic Syntax at 10, ESSLLI 2007, Dublin (2007)Google Scholar
  6. 6.
    Michaelis, J.: On Formal Properties of Minimalist Grammars. PhD thesis, Universität Potsdam (2001)Google Scholar
  7. 7.
    Raoult, J.C.: Rational tree relations. Bulletin of the Belgian Mathematical Society 4, 149–176 (1997)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Courcelle, B.: Monadic second-order definable graph transductions: a survey. Theoretical Computer Science 126, 53–75 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Kobele, G.M.: Formalizing mirror theory. Grammars 5(3), 177–221 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Engelfriet, J.: Context-free graph grammars. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages. Beyond Words, vol. 3, pp. 125–213. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  11. 11.
    Lang, B.: Recognition can be harder than parsing. Computational Intelligence 10(4), 486–494 (1994)CrossRefGoogle Scholar
  12. 12.
    Graf, T.: A tree transducer model of reference-set computation. UCLA Working Papers in Linguistics 15, 1–53 (2010)Google Scholar
  13. 13.
    Chomsky, N.: Aspects of the Theory of Syntax. MIT Press, Cambridge (1965)Google Scholar
  14. 14.
    Kobele, G.M.: Generating Copies: An investigation into structural identity in language and grammar. PhD thesis, University of California, Los Angeles (2006)Google Scholar
  15. 15.
    Koopman, H., Szabolcsi, A.: Verbal Complexes. MIT Press, Cambridge (2000)Google Scholar
  16. 16.
    Kayne, R.: The Antisymmetry of Syntax. MIT Press, Cambridge (1994)Google Scholar
  17. 17.
    Koopman, H.: Derivations and complexity filters. In: Alexiadou, A., Anagnostopoulou, E., Barbiers, S., Gärtner, H.M. (eds.) Dimensions of Movement: From features to remnants. Linguistik Aktuell/Linguistics Today, vol. 48, pp. 151–188. John Benjamins, Amsterdam (2002)CrossRefGoogle Scholar
  18. 18.
    Halle, M., Marantz, A.: Distributed morphology and the pieces of inflection. In: Hale, K., Keyser, S.J. (eds.) The View from Building 20, pp. 111–176. MIT Press, Cambridge (1993)Google Scholar
  19. 19.
    Mönnich, U.: Minimalist syntax, multiple regular tree grammars and direction preserving tree transductions. In: Rogers, J., Kepser, S. (eds.) Proceedings of the Workshop Model-Theoretic Syntax at 10, ESSLLI 2007, Dublin (2007)Google Scholar
  20. 20.
    Engelfriet, J., Heyker, L.: The string generating power of context-free hypergraph grammars. Journal of Computer and System Sciences 43, 328–360 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Morawietz, F., Cornell, T.: The MSO logic-automaton connection in linguistics. In: Lecomte, A., Lamarche, F., Perrier, G. (eds.) LACL 1997. LNCS (LNAI), vol. 1582, pp. 112–131. Springer, Heidelberg (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Gregory M. Kobele
    • 1
  1. 1.University of ChicagoUSA

Personalised recommendations