Advertisement

The Product-Free Lambek-Grishin Calculus Is NP-Complete

  • Jeroen Bransen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6736)

Abstract

The Lambek-Grishin calculus LG is the symmetric extension of the non-associative Lambek calculus NL. In this paper we prove that the derivability problem for the product-free fragment of LG is NP-complete, thus improving on Bransen (2010) where this is shown for LG with product.

Keywords

Inference Rule Logical Rule Boolean Formula Satisfying Assignment Display Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Bransen, 2010]
    Bransen, J.: The Lambek-Grishin calculus is NP-complete. In: Proceedings 15th Conference on Formal Grammar, Copenhagen (2010) (to appear)Google Scholar
  2. [de Groote, 1999]
    de Groote, P.: The Non-associative Lambek Calculus with Product in Polynomial Time. In: Murray, N.V. (ed.) TABLEAUX 1999. LNCS (LNAI), vol. 1617, pp. 128–139. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  3. [Foret, 2003]
    Foret, A.: On the computation of joins for non associative Lambek categorial grammars. In: Proceedings of the 17th International Workshop on Unification (UNIF 2003), Valencia, Spain, June 8-9 (2003)Google Scholar
  4. [Garey and Johnson, 1979]
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1979)zbMATHGoogle Scholar
  5. [Goré, 1998]
    Goré, R.: Substructural logics on display. Logic Jnl IGPL 6(3), 451–504 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  6. [Kandulski, 1988]
    Kandulski, M.: The non-associative Lambek calculus. In: Categorial Grammar. Linguistic and Literary Studies in Eastern Europe (LLSEE), vol. 25, pp. 141–151 (1988)Google Scholar
  7. [Lambek, 1958]
    Lambek, J.: The Mathematics of Sentence Structure. American Mathematical Monthly 65, 154–170 (1958)MathSciNetCrossRefzbMATHGoogle Scholar
  8. [Lambek, 1961]
    Lambek, J.: On the calculus of syntactic types. In: Structure of Language and Its Mathematical Aspects, pp. 166–178 (1961)Google Scholar
  9. [Melissen, 2009]
    Melissen, M.: The Generative Capacity of the Lambek-Grishin Calculus: A New Lower Bound. In: de Groote, P., Egg, M., Kallmeyer, L. (eds.) Formal Grammar. LNCS, vol. 5591, pp. 118–132. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  10. [Moortgat, 2007]
    Moortgat, M.: Symmetries in Natural Language Syntax and Semantics: The Lambek-Grishin Calculus. In: Leivant, D., de Queiroz, R. (eds.) WoLLIC 2007. LNCS, vol. 4576, pp. 264–284. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. [Moortgat, 2009]
    Moortgat, M.: Symmetric categorial grammar. Journal of Philosophical Logic 38(6), 681–710 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  12. [Moot, 2007]
    Moot, R.: Proof nets for display logic. CoRR, abs/0711.2444 (2007)Google Scholar
  13. [Pentus, 1993a]
    Pentus, M.: The conjoinability relation in Lambek calculus and linear logic. ILLC Prepublication Series ML–93–03, Institute for Logic, Language and Computation, University of Amsterdam (1993a)Google Scholar
  14. [Pentus, 1993b]
    Pentus, M.: Lambek grammars are context free. In: Proceedings of the 8th Annual IEEE Symposium on Logic in Computer Science, pp. 429–433. IEEE Computer Society Press, Los Alamitos (1993b)Google Scholar
  15. [Pentus, 2003]
    Pentus, M.: Lambek calculus is NP-complete. CUNY Ph.D. Program in Computer Science Technical Report TR–2003005, CUNY Graduate Center, New York (2003)Google Scholar
  16. [Pentus, 2010]
    Pentus, M.: A Polynomial-Time Algorithm for Lambek Grammars of Bounded Order. Linguistic Analysis 36, 441–472 (2010)Google Scholar
  17. [Savateev, 2009]
    Savateev, Y.: Product-Free Lambek Calculus Is NP-Complete. In: Artemov, S., Nerode, A. (eds.) LFCS 2009. LNCS, vol. 5407, pp. 380–394. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Jeroen Bransen
    • 1
  1. 1.Utrecht UniversityThe Netherlands

Personalised recommendations