Advertisement

Using Logic in the Generation of Referring Expressions

  • Carlos Areces
  • Santiago Figueira
  • Daniel Gorín
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6736)

Abstract

The problem of generating referring expressions (GRE) is an important task in natural language generation. In this paper, we advocate for the use of logical languages in the output of the content determination phase (i.e., when the relevant features of the object to be referred are selected). Many different logics can be used for this and we argue that, for a particular application, the actual choice shall constitute a compromise between expressive power (how many objects can be distinguished), computational complexity (how difficult it is to determine the content) and realizability (how often will the selected content be realized to an idiomatic expression). We show that well-known results from the area of computational logic can then be transferred to GRE. Moreover, our approach is orthogonal to previous proposals and we illustrate this by generalizing well-known content-determination algorithms to make them parametric on the logic employed.

Keywords

Description Logic Expressive Power Content Determination Label Graph Connected Subgraph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Areces, C., Koller, A., Striegnitz, K.: Referring expressions as formulas of description logic. In: Proc. of the 5th INLG, Salt Fork, OH, USA (2008)Google Scholar
  2. 2.
    Baader, F., McGuiness, D., Nardi, D., Patel-Schneider, P. (eds.): The Description Logic Handbook: Theory, implementation and applications. Cambridge University Press, Cambridge (2003)zbMATHGoogle Scholar
  3. 3.
    Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press, Cambridge (2001)CrossRefzbMATHGoogle Scholar
  4. 4.
    Dale, R.: Cooking up referring expressions. In: Proc. of the 27th ACL (1989)Google Scholar
  5. 5.
    Dale, R., Haddock, N.: Generating referring expressions involving relations. In: Proc. of the 5th EACL (1991)Google Scholar
  6. 6.
    Dale, R., Reiter, E.: Computational interpretations of the Gricean maxims in the generation of referring expressions. Cognitive Science 19 (1995)Google Scholar
  7. 7.
    Dale, R., Viethen, J.: Referring expression generation through attribute-based heuristics. In: Proc. of the 12th ENLG Workshop, pp. 58–65 (2009)Google Scholar
  8. 8.
    van Deemter, K.: Generating referring expressions: Boolean extensions of the incremental algorithm. Computational Linguistics 28(1), 37–52 (2002)CrossRefzbMATHGoogle Scholar
  9. 9.
    van Deemter, K., van der Sluis, I., Gatt, A.: Building a semantically transparent corpus for the generation of referring expressions. In: Proc. of the 4th INLG (2006)Google Scholar
  10. 10.
    Dovier, A., Piazza, C., Policriti, A.: An efficient algorithm for computing bisimulation equivalence. Theor. Comput. Sci. 311, 221–256 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Ebbinghaus, H., Flum, J., Thomas, W.: Mathematical Logic. Springer, Heidelberg (1996)zbMATHGoogle Scholar
  12. 12.
    Figueira, S., Gorín, D.: On the size of shortest modal descriptions. Advances in Modal Logic 8, 114–132 (2010)zbMATHGoogle Scholar
  13. 13.
    Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. Freeman, New York (1979)zbMATHGoogle Scholar
  14. 14.
    Henzinger, M.R., Henzinger, T.A., Kopke, P.W.: Computing simulations on finite and infinite graphs. In: Proc. of 36th Annual Symposium on Foundations of Computer Science, pp. 453–462. IEEE Computer Society Press, Los Alamitos (1995)Google Scholar
  15. 15.
    Hopcroft, J.: An n log(n) algorithm for minimizing states in a finite automaton. In: Kohave, Z. (ed.) Theory of Machines and Computations. Academic Press, London (1971)Google Scholar
  16. 16.
    Horacek, H.: An algorithm for generating referential descriptions with flexible interfaces. In: Proc. of the 35th ACL, pp. 206–213 (1997)Google Scholar
  17. 17.
    Krahmer, E., van Erk, S., Verleg, A.: Graph-based generation of referring expressions. Computational Linguistics 29(1) (2003)Google Scholar
  18. 18.
    Paige, R., Tarjan, R.: Three partition refinement algorithms. SIAM J. Comput. 16(6), 973–989 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Saha, D.: An incremental bisimulation algorithm. In: Arvind, V., Prasad, S. (eds.) FSTTCS 2007. LNCS, vol. 4855, pp. 204–215. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  20. 20.
    Stone, M.: On identifying sets. In: Proc. of the 1st INLG (2000)Google Scholar
  21. 21.
    Stone, M., Webber, B.: Textual economy through close coupling of syntax and semantics. In: Proc. of the 9th INLG Workshop, pp. 178–187 (1998)Google Scholar
  22. 22.
    Viethen, J., Dale, R.: Algorithms for generating referring expressions: Do they do what people do? In: Proc. of the 4th INLG (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Carlos Areces
    • 1
  • Santiago Figueira
    • 2
  • Daniel Gorín
    • 3
  1. 1.INRIA Nancy, Grand EstFrance
  2. 2.Departamento de ComputaciónFCEyN, UBA and CONICETArgentina
  3. 3.Departamento de ComputaciónFCEyN, UBAArgentina

Personalised recommendations