Advertisement

Logic Programming of the Displacement Calculus

  • Glyn Morrill
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6736)

Abstract

The displacement calculus of Morrill, Valentín and Fadda (2011)[12] forms a foundation for type logical categorial grammar in which discontinuity is accommodated alongside continuity in a logic which is free of structural rules and which enjoys Cut-elimination, the subformula property, decidability, and the finite reading property. The calculus deploys a new kind of sequent calculus which we call hypersequent calculus in which types and configurations have not only external context but also internal context, in the case that they are discontinuous. In this paper we consider the logic programming of backward chaining hypersequent proof search for the displacement calculus. We show how focusing eliminates all spurious ambiguity in the fragment without antecedent tensors and we illustrate coding of the essential features of displacement. In this way we lay a basis for parsing/theorem proving for this calculus, which is being used and extended in a system CatLog currently under development.

Keywords

categorial grammar discontinuity focusing parsing as deduction sequent calculus 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andreoli, J.M.: Logic programming with focusing in linear logic. Journal of Logic and Computation 2(3), 297–347 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Dowty, D.R., Wall, R.E., Peters, S.: Introduction to Montague Semantics. Synthese Language Library, vol. 11. D. Reidel, Dordrecht (1981)Google Scholar
  3. 3.
    Hendriks, H.: Studied flexibility. Categories and types in syntax and semantics. PhD thesis, Universiteit van Amsterdam, ILLC, Amsterdam (1993)Google Scholar
  4. 4.
    Hepple, M.: The Grammar and Processing of Order and Dependency. PhD thesis, University of Edinburgh (1990)Google Scholar
  5. 5.
    Hepple, M.: Normal form theorem proving for the Lambek calculus. In: Karlgren, H. (ed.) Proceedings of COLING, Stockholm (1990)Google Scholar
  6. 6.
    Jäger, G.: Anaphora and Type Logical Grammar. Trends in Logic – Studia Logica Library, vol. 24. Springer, Dordrecht (2005)zbMATHGoogle Scholar
  7. 7.
    König, E.: Parsing as natural deduction. In: Proceedings of the Annual Meeting of the Association for Computational Linguistics, Vancouver (1989)Google Scholar
  8. 8.
    Lambek, J.: The mathematics of sentence structure. American Mathematical Monthly 65, 154–170 (1958); reprinted in Buszkowski, W., Marciszewski, W., van Benthem, J. (eds.): Categorial Grammar. Linguistic & Literary Studies in Eastern Europe, vol. 25, pp. 153–172. John Benjamins, Amsterdam (1988)CrossRefzbMATHGoogle Scholar
  9. 9.
    Moortgat, M.: Categorial Investigations: Logical and Linguistic Aspects of the Lambek Calculus. Foris, Dordrecht, PhD thesis, Universiteit van Amsterdam (1988)Google Scholar
  10. 10.
    Morrill, G.: Intensionality and Boundedness. Linguistics and Philosophy 13(6), 699–726 (1990)CrossRefGoogle Scholar
  11. 11.
    Morrill, G., Valentín, O.: On Anaphora and the Binding Principles in Categorial Grammar. In: Dawar, A., de Queiroz, R. (eds.) WoLLIC 2010. LNCS, vol. 6188, pp. 176–190. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Morrill, G., Valentín, O., Fadda, M.: The Displacement Calculus. Journal of Logic, Language and Information 20(1), 1–48 (2011), doi:10.1007/s10849-010-9129-2MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Morrill, G.V.: Type Logical Grammar: Categorial Logic of Signs. Kluwer Academic Publishers, Dordrecht (1994)CrossRefzbMATHGoogle Scholar
  14. 14.
    Morrill, G.V.: Categorial Grammar: Logical Syntax, Semantics, and Processing. Oxford University Press, Oxford (2010)Google Scholar
  15. 15.
    van Benthem, J.: Language in Action: Categories, Lambdas, and Dynamic Logic. Studies in Logic and the Foundations of Mathematics, vol. 130. North-Holland, Amsterdam (1991); revised student edition printed in 1995 by the MIT PresszbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Glyn Morrill
    • 1
  1. 1.Universitat Politècnica de CatalunyaSpain

Personalised recommendations