Skip to main content

On the Performance of a Retransmission-Based Synchronizer

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6796))

Abstract

Designing algorithms for distributed systems that provide a round abstraction is often simpler than designing for those that do not provide such an abstraction. However, distributed systems need to tolerate various kinds of failures. The concept of a synchronizer deals with both: It constructs rounds and allows masking of transmission failures. One simple way of dealing with transmission failures is to retransmit a message until it is known that the message was successfully received. We calculate the exact value of the average rate of a retransmission-based synchronizer in an environment with probabilistic message loss, within which the synchronizer shows nontrivial timing behavior. The theoretic results, based on Markov theory, are backed up with Monte Carlo simulations.

This research was partially supported by grants P21694 and P20529 of the Austrian Science Fund (FWF).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Attiya, H., Welch, J.: Distributed Computing: Fundamentals, Simulations and Advanced Topics, 2nd edn. John Wiley & Sons, Chichester (2004)

    Book  MATH  Google Scholar 

  2. Awerbuch, B.: Complexity of Network Synchronization. J. ACM 32, 804–823 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  3. Baccelli, F., Hong, D.: Analytic Expansions of Max-Plus Lyapunov Exponents. Ann. Appl. Probab. 10, 779–827 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bakr, O., Keidar, I.: Evaluating the Running Time of a Communication Round over the Internet. In: 21st Annual ACM Symposium on Principles of Distributed Computing. ACM, New York (2002)

    Google Scholar 

  5. Ben-Or, M.: Another Advantage of Free Choice: Completely Asynchronous Agreement Protocols. In: 2nd Annual ACM Symposium on Principles of Distributed Computing. ACM, New York (1983)

    Google Scholar 

  6. Bertsekas, D.P., Tsitsiklis, J.N.: Parallel and Distributed Computation: Numerical Methods. Prentice Hall, Englewood Cliffs (1989)

    MATH  Google Scholar 

  7. Bracha, G., Toueg, S.: Asynchronous Consensus and Broadcast Protocols. J. ACM 32, 824–840 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  8. Charron-Bost, B., Schiper, A.: The Heard-Of Model: Computing in Distributed Systems with Benign Faults. Distrib. Comput. 22, 49–71 (2009)

    Article  MATH  Google Scholar 

  9. Dwork, C., Lynch, N., Stockmeyer, L.: Consensus in the Presence of Partial Synchrony. J. ACM 35, 288–323 (1988)

    Article  MathSciNet  Google Scholar 

  10. Heidergott, B.: Max-Plus Linear Stochastic Systems and Pertubation Analysis. Springer, Heidelberg (2006)

    Book  MATH  Google Scholar 

  11. Lamport, L., Shostak, R., Pease, M.: The Byzantine Generals Problem. ACM T. Progr. Lang. Sys. 4, 382–401 (1982)

    Article  MATH  Google Scholar 

  12. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann, San Francisco (1996)

    MATH  Google Scholar 

  13. Meyn, S., Tweedie, R.L.: Markov Chains and Stochastic Stability. Springer, Heidelberg (1993)

    Book  MATH  Google Scholar 

  14. Neiger, G., Toueg, S.: Automatically Increasing the Fault-Tolerance of Distributed Algorithms. J. Algorithm 11, 374–419 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  15. Nowak, T., Függer, M., Kößler, A.: On the Performance of a Retransmission-based Synchronizer. Research Report 9/2011, TU Wien, Inst. f. Technische Informatik (2011), http://www.vmars.tuwien.ac.at/documents/extern/2899/paper.pdf

  16. Rajsbaum, S.: Upper and Lower Bounds for Stochastic Marked Graphs. Inform. Process. Lett. 49, 291–295 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  17. Rajsbaum, S., Sidi, M.: On the Performance of Synchronized Programs in Distributed Networks with Random Processing Times and Transmission Delays. IEEE T. Parall. Distr. 5, 939–950 (1994)

    Article  Google Scholar 

  18. Resing, J.A.C., de Vries, R.E., Hooghiemstra, G., Keane, M.S., Olsder, G.J.: Asymptotic Behavior of Random Discrete Event Systems. Stochastic Process. Appl. 36, 195–216 (1990)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nowak, T., Függer, M., Kößler, A. (2011). On the Performance of a Retransmission-Based Synchronizer. In: Kosowski, A., Yamashita, M. (eds) Structural Information and Communication Complexity. SIROCCO 2011. Lecture Notes in Computer Science, vol 6796. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22212-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22212-2_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22211-5

  • Online ISBN: 978-3-642-22212-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics