Advertisement

Adapted Queueing Algorithms for Process Chains

  • Ágnes Bogárdi-Mészöly
  • András Rövid
  • Péter Földesi
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 10)

Abstract

Process chains are a common modeling paradigm for analysis and optimization of logistic processes, and are intensively used in many practical applications. The ProC/B toolset is a collection of software tools for modeling, analysis, validation and optimization of process chains. The ProC/B models can be translated into queueing networks or Petri nets, which can be solved by effective techniques and algorithms to evaluate performance metrics. The base queueing model with Mean-Value Analysis evaluation algorithm, and their adaptations for modeling thread pool and queue limit have been verified and validated for multi-tier software systems. The goal of our work is to adapt these models and algorithms for process chains to model parallel processes and queue limit.

Keywords

Queue Length Process Chain Parallel Process Evaluation Algorithm System Performance Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kuhn, A.: Prozessketten in der Logistik, Entwicklungstrends und Umsetzungsstrategien. Verlag Praxiswissen, Dortmund (1995) (in German)Google Scholar
  2. 2.
    Arns, M., Fischer, M., Tatlitürk, H., Tepper, C., Völker, M.: Modeling and Analysis Framework of Logistic Process Chains. In: Proc. of Joint Tool Session at PNPM/MMB/PAPM Conferences, Aachen, Germany, pp. 56–61 (2001)Google Scholar
  3. 3.
    Bause, F., Beilner, H., Fischer, M., Kemper, P., Völker, M.: The ProC/B toolset for the modelling and analysis of process chains. In: Field, T., Harrison, P.G., Bradley, J., Harder, U. (eds.) TOOLS 2002. LNCS, vol. 2324, p. 51. Springer, Heidelberg (2002)Google Scholar
  4. 4.
    Arns, M., Eickhoff, M., Fischer, M., Tepper, C., Völker, M.: New Features in the ProC/B toolset In: Tools of the 2003 Illinois International Multiconference on Measurement, Modelling, and Evaluation of Computer-Communication Systems, Universität Dortmund, Fachbereich Informatik, Technical Report 781 (2003)Google Scholar
  5. 5.
    Arns, M., Fischer, M., Kemper, P., Tepper, C.: Supply Chain Modelling and Its Analytical Evaluation. Journal of the Operational Research Society 53, 885–894 (2002)zbMATHCrossRefGoogle Scholar
  6. 6.
    Bucholz, P., Tepper, C.: Functional Analysis of Process-Oriented Systems. In: Fleuren, H., den Hertog, D., Kort, P. (eds.) Operations research proceedings, pp. 127–135. Springer, Heidelberg (2004)Google Scholar
  7. 7.
    Kleinrock, L.: Theory, Queueing Systems, vol. 1. John Wiley and Sons, Chichester (1975)Google Scholar
  8. 8.
    Kleinrock, L.: Computer Applications, Queueing Systems, vol. 2. John Wiley and Sons, Chichester (1976)Google Scholar
  9. 9.
    Jain, R.: The Art of Computer Systems Performance Analysis. John Wiley and Sons, Chichester (1991)zbMATHGoogle Scholar
  10. 10.
    Kounev, S., Buchmann, A.: Performance Modelling of Distributed E-Business Applications using Queuing Petri Nets. In: IEEE International Symposium on Performance Analysis of Systems and Software (2003)Google Scholar
  11. 11.
    Smith, C.U., Williams, L.G.: Building responsive and scalable web applications. In: Computer Measurement Group Conference, pp. 127–138 (2000)Google Scholar
  12. 12.
    Menascé, D.A., Almeida, V.: Capacity Planning for Web Services: Metrics, Models, and Methods. Prentice Hall PTR, Upper Saddle River (2001)Google Scholar
  13. 13.
    Urgaonkar, B.: Dynamic Resource Management in Internet Hosting Platforms, Dissertation, Massachusetts (2005)Google Scholar
  14. 14.
    Urgaonkar, B., Pacifici, G., Shenoy, P., Spreitzer, M., Tantawi, A.: An Analytical Model for Multi-tier Internet Services and its Applications. ACM SIGMETRICS Performance Evaluation Review 33(1), 291–302 (2005)CrossRefGoogle Scholar
  15. 15.
    Reiser, M., Lavenberg, S.S.: Mean-Value Analysis of Closed Multichain Queuing Networks. Association for Computing Machinery 27, 313–322 (1980)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Bogárdi-Mészöly, Á.: Improved Performance Models for Web-Based Software Systems, Modeling Thread Pool and Queue Limit Performance Factors, p. 132. LAP LAMBERT Academic Publishing, Saarbrücken (2010)Google Scholar
  17. 17.
    Bogárdi-Mészöly, Á., Rövid, A., Levendovszky, T.: Performance Prediction of Web-Based Software Systems. In: Computational Intelligence in Engineering. SCI, vol. 313, pp. 323–336. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  18. 18.
    Bogárdi-Mészöly, Á., Levendovszky, T.: A Novel Algorithm for Performance Prediction of Web-Based Software Systems. Performance Evaluation 68(1), 45–57 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Ágnes Bogárdi-Mészöly
    • 1
  • András Rövid
    • 2
  • Péter Földesi
    • 3
  1. 1.Department of Automation and Applied InformaticsBudapest University of Technology and EconomicsBudapestHungary
  2. 2.Institute of Intelligent Engineering SystemsÓbuda UniversityBudapestHungary
  3. 3.Department of Logistics and ForwardingSzéchenyi István UniversityGyőrHungary

Personalised recommendations