Fuzzy Preference Based Organizational Performance Measurement

  • Roberta O. Parreiras
  • Petr Ya Ekel
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 10)


This paper introduces a methodology for constructing a multidimesional indicator designed for organizational performance measurement. The methodology involves the application of fuzzy models and methods of their analysis. Its use requires the construction of fuzzy preference relations by means of the comparison of performance measures with respect to a reference standard defined as a predetermined scale consisting of linguistic terms. The exploitation of the fuzzy preference relations is carried out by means of the Orlovsky choice procedure. An application example related to the organizational performance evaluation with the use of the proposed methodology is considered, in order to demonstrate its applicability.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abdel-Maksoud, A., Dugdale, D., Luther, R.: Non-financial performance measurement in manufacturing companies. The Br. Account Rev. 37, 261–297 (2005), doi:10.1016/ Scholar
  2. 2.
    Berrah, L., Mauris, G., Foulloy, L., Haurat, A.: Global vision and performance indicators for an industrial improvement approach. Comput. Ind. 43, 211–225 (2000), doi:10.1016/S0166-3615(00)00070-1CrossRefGoogle Scholar
  3. 3.
    Bititci, U.S., Suwignjo, P., Carrie, A.S.: Strategy management through quantitative modelling of performance measurement systems. Int. J. Prod. Econ. 69, 15–22 (2001), doi:10.1016/S0925-5273(99)00113-9CrossRefGoogle Scholar
  4. 4.
    Bosilj-Vuksice, V., Milanovic, L., Skrinjar, R., Indihar-Stemberger, M.: Organizational performance measures for business process management: a performance measurement guideline. In: Proc. Tenth Conf. Comput. Model. Simul. (2008), doi:10.1109/UKSIM.2008.114Google Scholar
  5. 5.
    Brouwer, R.K.: Fuzzy set covering of a set of ordinal attributes without parameter sharing. Fuzzy Sets Syst. 157, 1775–1786 (2006), doi:10.1016/j.fss.2006.01.004MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Chapman, C.S., Hopwood, A.G., Shields, M.D.: Handbook of management accounting research, vol. 1. Elsevier, Amsterdam (2007)Google Scholar
  7. 7.
    Clivillé, V., Berrah, L., Mauris, G.: Quantitative expression and aggregation of performance measurements based on the MACBETH multi-criteria method. Int. J. Prod. Econ. 105, 171–189 (2007), doi:10.1016/j.ijpe.2006.03.002CrossRefGoogle Scholar
  8. 8.
    Ekel, P., Pedrycz, W., Schinzinger, R.: A general approach to solving a wide class of fuzzy optimization problems. Fuzzy Sets Syst. 97, 49–66 (1998), doi:10.1016/S0165-0114(96)00334-XMathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Ekel, P.Y., Silva, M.R., Schuffner Neto, F., Palhares, R.M.: Fuzzy preference modeling and its application to multiobjective decision making. Comput. Math Appl. 52, 179–196 (2006), doi:10.1016/j.camwa.2006.08.012MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Herrera-Viedma, E., Herrera, F., Chiclana, F.: A consensus model for multiperson decision making with different preference structures. IEEE Trans. Syst. Man Cybern – Part A: Syst. Hum. 32, 394–402 (2002), doi:10.1109/TSMCA.2002.802821CrossRefGoogle Scholar
  11. 11.
    Kaplan, R.S., Norton, D.: The Balanced Scorecard: Translating Strategy into Action. Harvard Business School, Boston (1996)Google Scholar
  12. 12.
    Lu, C., Lan, J., Wang, Z.: Aggregation of fuzzy opinions under group decision-making based on similarity and distance. J. Syst. Sci. Complex 19, 63–71 (2006), doi:10.1007/s11424-006-0063-yMathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Nudurupati, S.S., Bititci, U.S., Kumar, V., Chan, F.T.S.: State of the art literature review on performance measurement. Comput. Ind. Eng. (in press), doi:10.1016/j.cie.2010.11.010Google Scholar
  14. 14.
    Orlovsky, S.A.: Decision making with a fuzzy preference relation. Fuzzy Sets Syst 1, 155–167 (1978), doi:10.1016/0165-0114(78)90001-5MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Orlovsky, S.A.: Problems of Decision Making with Fuzzy Information. Nauka, Moscow (1981) (in Russian)Google Scholar
  16. 16.
    Pedrycz, W.: Fuzzy equalization in the construction of fuzzy sets. Fuzzy Sets Syst. 119, 329–335 (2001), doi:10.1016/S0165-0114(99)00135-9MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Pedrycz, W., Ekel, P., Parreiras, R.: Fuzzy Multicriteria Decision-Making: Models, Methods, and Applications. Wiley, Chichester (2010)CrossRefGoogle Scholar
  18. 18.
    Popova, V., Sharpanskykh, A.: Modeling organizational performance indicators. Inf. Syst. 35, 505–527 (2010), doi:10.1016/jis.2009.12.001CrossRefGoogle Scholar
  19. 19.
    Shobrys, D.E., White, D.C.: Planning, scheduling and control systems: why cannot they work together. Comput. Chem. Eng. 26, 149–160 (2000), doi:10.1016/S0098-1354(00)00508-1CrossRefGoogle Scholar
  20. 20.
    Yager, R.R.: Multicriteria decision making using fuzzy quantifiers. In: Proc. IEEE Conf. Comput. Intell. Financial Eng. (1995), doi:10.1109/CIFER.1995.495251Google Scholar
  21. 21.
    Yu, V.F., Hu, K.J.: An integrated fuzzy multi-criteria approach for the performance evaluation of multiple manufacturing plants. Comput. Ind. Eng. 58, 269–277 (2010), doi:10.1016/j.cie.2009.10.005CrossRefGoogle Scholar
  22. 22.
    Zimmermann, H.J.: Fuzzy Set Theory and Its Application. Kluwer Academic Publishers, Boston (1990)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Roberta O. Parreiras
    • 1
  • Petr Ya Ekel
    • 1
  1. 1.Pontifical CatholicUniversity of Minas GeraisBelo HorizonteBrazil

Personalised recommendations