Forecasting Quarterly Profit Growth Rate Using an Integrated Classifier

  • You-Shyang Chen
  • Ming-Yuan Hsieh
  • Ya-Ling Wu
  • Wen-Ming Wu
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 10)


This study proposes an integrated procedure based on four components: experiential knowledge, feature selection method, rule filter, and rough set theory for forecasting quarterly profit growth rate (PGR) in the financial industry. To evaluate the proposed procedure, a called PGR dataset collected from Taiwan’s stock market in the financial holding industry is employed. The experimental results indicate that the proposed procedure surpasses the listing methods in terms of both higher accuracy and fewer attributes.


Profit growth rate (PGR) Rough sets theory (RST) Feature selection Condorcet method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chen, C.C.: A model for customer-focused objective-based performance evaluation of logistics service providers. Asia Pacific Journal of Marketing and Logistics 20(3), 309–322 (2008)CrossRefGoogle Scholar
  2. 2.
    Fan, H., Mark, A.E., Zhu, J., Honig, B.: Comparative study of generalized Born models: Protein dynamics. Chemical Theory and Computation Special Feature 102(19), 6760–6764 (2005)Google Scholar
  3. 3.
    Barber, S.: Creating effective load models for performance testing with incomplete empirical data. In: Proceedings of the Sixth IEEE International Workshop, pp. 51–59 (2004)Google Scholar
  4. 4.
    Dasgupta, C.G., Dispensa, G.S., Ghose, S.: Comparative the predictive performance of a neural network model with some traditional market response models. International Journal of Forecast 10, 235–244 (1994)CrossRefGoogle Scholar
  5. 5.
    Zopounidis, C., Doumpos, M.: Multicriteria classification and sorting methods: a literature review. European Journal of Operational Research 138, 229–246 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Dunham, M.H.: Data mining: Introductory and advanced topics. Prentice Hall, Upper Saddle River (2003)Google Scholar
  7. 7.
    Ravi Kumar, P., Ravi, V.: Bankruptcy prediction in banks and firms via statistical and intelligent techniques – A review. European Journal of Operational Research 180, 1–28 (2007)zbMATHCrossRefGoogle Scholar
  8. 8.
    Andres, J.D., Landajo, M., Lorca, P.: Forecasting business profitability by using classification techniques: A comparative analysis based on a Spanish case. European Journal of Operational Research 167, 518–542 (2005)zbMATHCrossRefGoogle Scholar
  9. 9.
    Min, S.H., Lee, J., Han, I.: Hybrid genetic algorithms and support vector machines for bankruptcy prediction. Expert Systems with Applications 31, 652–660 (2006)CrossRefGoogle Scholar
  10. 10.
    Press, E.: Analyzing Financial Statements. Lebahar, Friedman (1999)Google Scholar
  11. 11.
    Loth, R.B.: Select winning stocks using financial statements, IL, Dearborn, Chicago (1999)Google Scholar
  12. 12.
    Covin, J.G., Green, K.M., Slevin, D.P.: Strategic process effects on the entrepreneurial orientation–sales growth rate relationship. Entrepreneurship Theory and Practice 30(1), 57–82 (2006)CrossRefGoogle Scholar
  13. 13.
    Hall, M.A., Holmes, G.: Benchmarking feature selection techniques for discrete class data mining. IEEE Transactions on Data Engineering 15(3), 1–16 (2003)Google Scholar
  14. 14.
    Dash, M., Choi, K., Scheuermann, P., Liu, H.: Feature selection for clustering-a filter solution. In: Proceedings of Second International Conference. Data Mining, pp. 115–122 (2002)Google Scholar
  15. 15.
    Kohavi, R., John, G.H.: Wrappers for feature subset selection. Artificial Intelligence 97(1-2), 273–324 (1997)zbMATHCrossRefGoogle Scholar
  16. 16.
    Liu, H., Yu, L.: Toward integrating feature selection algorithms for classification and clustering. IEEE Transactions on Knowledge and Data Engineering 17(4), 491–502 (2005)CrossRefGoogle Scholar
  17. 17.
    Das, S.: Filters, wrappers and a boosting-based hybrid for feature selection. In: Proceedings of 18th International Conference. Machine Learning, pp. 74–81 (2001)Google Scholar
  18. 18.
    Witten, I.H., Frank, E.: Data mining: practical machine learning tools and techniques, 2nd edn. Morgan Kaufmann Publishers, USA (2005)zbMATHGoogle Scholar
  19. 19.
    Hall, M.A.: Correlation-based feature subset selection for machine learning. Thesis submitted in partial fulfilment of the requirements of the degree of Doctor of Philosophy at the University of Waikato (1998)Google Scholar
  20. 20.
    Kononenko, I.: Estimating attributes: Analysis and extensions of relief. In: Proceedings of the Seventh European Conference on Machine Learning, pp. 171–182. Springer, Heidelberg (1994)Google Scholar
  21. 21.
    Liu, H., Setiono, R.: A probabilistic approach to feature selection - A filter solution. In: Proceedings of the 13th International Conference on Machine Learning, pp. 319–327 (1996)Google Scholar
  22. 22.
    Duda, R.O., Hart, P.E., Stork, D.G.: Pattern classification, 2nd edn. Wiley and Sons, Inc., New York (2001)zbMATHGoogle Scholar
  23. 23.
    Dumais, S., Platt, J., Heckerman, D., Sahami, M.: Inductive learning algorithms and representations for text categorization. In: Proceedings of the International Conference on Information and Knowledge Management, pp. 148–155 (1998)Google Scholar
  24. 24.
    Pawlak, Z.: Rough sets. Informational Journal of Computer and Information Sciences 11(5), 341–356 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Pawlak, Z.: Rough Sets. Theoretical Aspects of Reasoning About Data. Kluwer, Dordrecht (1991)zbMATHGoogle Scholar
  26. 26.
    Grzymala-Busse, J.W.: LERS—a system for learning from examples based on rough sets. In: Intelligent Decision Support. Handbook of Applications and Advances of the Rough Sets Theory, pp. 3–18 (1992)Google Scholar
  27. 27.
    Grzymala-Busse, J.W.: A new version of the rule induction system LERS. Fundamenta Informaticae 31(1), 27–39 (1997)zbMATHGoogle Scholar
  28. 28.
    Nguyen, H.S., Nguyen, S.H.: Analysis of stulong data by rough set exploration system (RSES). In: Berka, P. (ed.) Proc. ECML/PKDD Workshop, pp. 71–82 (2003)Google Scholar
  29. 29.
    Condorcet method. Wikipedia, (retrieved October 31, 2010)
  30. 30.
    Bazan, J., Nguyen, H.S., Nguyen, S.H., Synak, P., Wróblewski, J.: Rough set algorithms in classification problem. In: Polkowski, L., Tsumoto, S., Lin, T. (eds.) Rough Set Methods and Applications, pp. 49–88. Physica-Verlag, Heidelberg (2000)Google Scholar
  31. 31.
    Murphy, K.P.: Bayes Net ToolBox, Technical report, MIT Artificial Intelligence Labortary (2002), Downloadable from
  32. 32.
    Lippmann, R.P.: An introduction to computing with neural nets. IEEE Acoustics, Speech and Signal Processing Magazine 4(2), 4–22 (1987)Google Scholar
  33. 33.
    Bazan, J., Szczuka, M.: RSES and RSESlib - A collection of Tools for rough set. LNCS, pp. 106–113. Springer, Berlin (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • You-Shyang Chen
    • 1
  • Ming-Yuan Hsieh
    • 2
  • Ya-Ling Wu
    • 3
  • Wen-Ming Wu
    • 4
  1. 1.Department of Information ManagementHwa Hsia Institute of Technology
  2. 2.Department of International BusinessNational Taichung University of Education
  3. 3.Department of Applied EnglishNational Chin-Yi University of Technology
  4. 4.Department of Distribution ManagementNational Chin-Yi University of Technology

Personalised recommendations