Advertisement

A Dominance-Based Rough Set Approach of Mathematical Programming for Inducing National Competitiveness

  • Yu-Chien Ko
  • Gwo-Hshiung Tzeng
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 10)

Abstract

The dominance-based rough set approach is a powerful technology for approximating ranking classes. Analysis of large real-life data sets shows, however, decision rules induced from lower approximations are weak, that is supported by few entities only. For enhancing the DRSA, the mathematical programming is applied to support the lower approximations with entities as more as possible. The mathematical coding such as unions of decision classes, dominance sets, rough approximations, and quality of approximation is implemented in Lingo 12. It is applied on the 2010 World Competitiveness Yearbook of International Institute for Management Development (WCY-IMD). The results show the business finance and attitudes & values matter achieving the top 10 positions in the world competitiveness.

Keywords

dominance-based rough set approach (DRSA) Mathematical programming (MP) national competitiveness 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Greco, S., Matarazzo, B., Slowinski, R.: Rough set approach to multi-attribute choice and ranking problems. In: ICS Research Report 38/95, Proceedings of the Twelfth International Conference, Hagen, Germany, pp. 318–329. Springer, Berlin (1997)Google Scholar
  2. 2.
    Greco, S., Matarazzo, B., Slowinski, R.: Rough approximation of a preference relation by dominance relations. ’European Journal of Operational Research 117(1), 63–83 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Greco, S., Matarazzo, B., Slowinski, R.: Extension of the rough set approach to multicriteria decision support. INFOR 38(3), 161–193 (2000)Google Scholar
  4. 4.
    Greco, S., Matarazzo, B., Słowiński, R., Stefanowski, J.: Variable consistency model of dominance-based rough sets approach. In: Ziarko, W.P., Yao, Y. (eds.) RSCTC 2000. LNCS (LNAI), vol. 2005, pp. 170–181. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  5. 5.
    Greco, S., Matarazzo, B., Slowinski, R.: Rough set theory for multicriteria decision analysis. European Journal of Operational Research 129(1), 1–47 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Greco, S., Matarazzo, B., Slowinski, R.: Rough approximation by dominance relations. International Journal of Intelligent Systems 17(2), 153–171 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Blaszczynski, J., Greco, S., Matarazzo, B., Slowinski, R.: Multi-criteria classification - A new scheme for application of dominance-based decision rules. European Journal of Operational Research 181(3), 1030–1044 (2007)zbMATHCrossRefGoogle Scholar
  8. 8.
    Liou, J.H., Yen, L., Tzeng, G.H.: Using decision rules to achieve mass customization of airline services. European Journal of Operational Research 205(3), 680–686 (2010)zbMATHCrossRefGoogle Scholar
  9. 9.
    Fan, T.F., Liu, D.R., Tzeng, G.H.: Rough set-based logics for multicriteria decision analysis. European Journal of Operational Research 182(1), 340–355 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Shyng, J.-Y., Shieh, H.-M., et al.: Using FSBT technique with Rough Set Theory for personal investment portfolio analysis. European Journal of Operational Research 201(2), 601–607 (2010)CrossRefGoogle Scholar
  11. 11.
    Błaszczyński, J., Dembczyński, K., Słowiński, R.: Interactive analysis of preference-ordered data using dominance-based rough set approach. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS (LNAI), vol. 4029, pp. 489–498. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Li, H.L., Chen, M.H.: Induction of Multiple Criteria Optimal Classification Rules for Biological and Medical Data. Computers in Biology and Medicine 38(1), 42–52 (2008)CrossRefGoogle Scholar
  13. 13.
    Kotlowski, W., Dembczynski, K., Greco, S., Slowinski, R.: Measures of monotone relationships using dominance-based rough set approach (DRSA), http://www.iiasa.ac.at/~marek/ftppub/Pubs/csm06/kotlowski_pres.pdf
  14. 14.
    IMD, World Competitiveness Yearbook, Institute Management Development, Lausanne, Switzerland (2009)Google Scholar
  15. 15.
    IMD, World Competitiveness Yearbook, Institute Management Development, Lausanne, Switzerland (2010)Google Scholar
  16. 16.
    Pawlak, Z., Slowinski, R.: Rough set approach to multi attributes decision analysis. European Journal of Operational Research 72(3), 443–459 (1994)zbMATHCrossRefGoogle Scholar
  17. 17.
    Pawlak, Z.: Rough set approach to knowledge-based decision support. European Journal of Operational Research 99(1), 48–57 (1997)zbMATHCrossRefGoogle Scholar
  18. 18.
    Pawlak, Z.: Rough sets, decision algorithms and Bayes’ theorem. European Journal of Operational Research 136(1), 181–189 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Zhu, D., Premkumar, G., Zhang, X., Chu, C.H.: Data mining for network intrusion detection: a comparison of alternative methods. Decision Science Journal 32(4), 635–660 (2001)CrossRefGoogle Scholar
  20. 20.
    Kyeong-Won, K., Hwa-Nyeon, K.: Global financial crisis overview. SERI Quarterly 2(2), 12–21 (2009)Google Scholar
  21. 21.
    Stiglitz, J.E.: Lessons from the Global Financial Crisis of 2008. Seoul Journal of Economics 23(3), 321–339 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Yu-Chien Ko
    • 1
  • Gwo-Hshiung Tzeng
    • 2
  1. 1.Department of Information ManagementChung Hua UniversityHsinchu CityTaiwan
  2. 2.Graduate Institute of Project ManagementKainan UniversityLuchuTaiwan

Personalised recommendations