Robotics Application within Bioengineering: Neuroprosthesis Test Bench and Model Based Neural Control for a Robotic Leg

  • Dorin Popescu
  • Dan Selişteanu
  • Marian S. Poboroniuc
  • Danut C. Irimia
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 10)


This work deals with motion analysis of the human body, with robotic leg control and then with neuroprosthesis test bench. The issues raised in motion analysis are of interest for controlling motion-specific parameters for movement of the robotic leg. The resulting data are used for further processing in humanoid robotics and assistive and recuperative technologies for people with disabilities. The results are implemented on a robotic leg, which has been developed in our laboratories. It has been used to build a neuroprosthesis control test bench. A model based neural control strategy is implemented, too. The performances of the implemented control strategies for trajectory tracking are analysed by computer simulation.


bioengineering neural networks robotics neuroprosthesis control 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Spinal Cord Injury statistics (updated June 2009), Available from the Foundation for Spinal Cord Injury Prevention, Care and Cure (accessed March 3, 2011)
  2. 2.
    Internet world stats, (accessed March 3, 2011
  3. 3.
    Paraplegic and Quadriplegic Forum for Complete and Incomplete Quadriplegics and Paraplegics and wheelchair users Paralyzed with a Spinal Cord Injury, (accessed March 3, 2011)
  4. 4.
    Poboroniuc, M., Wood, D.E., Riener, R., Donaldson, N.N.: A New Controller for FES-Assisted Sitting Down in Paraplegia. Advances in Electrical and Computer Engineering 10(4), 9–16 (2010)CrossRefGoogle Scholar
  5. 5.
    Irimia, D.C., Poboroniuc, M.S., Stefan, C.M.: Voice Controlled Neuroprosthesis System. In: Proceedings of the 12th Mediterranean Conf. on Medical and Biological Engineering and Computing MEDICON 2010, Chalkidiki, Greece, May 27-30. IFMBE Proceedings, vol. 29, p. 426 (2010)Google Scholar
  6. 6.
    Moeslund, T., Granum, E.: A Survey of Computer Vision-Based Human Motion Capture. Computer Vision and Image Understanding 81, 231–268 (2001)zbMATHCrossRefGoogle Scholar
  7. 7.
    Sezan, M.I., Lagendijk, R.L.: Motion Analysis and Image Sequence Processing. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  8. 8.
    Aggarwal, J.K., Cai, Q.: Human motion analysis: a review. In: Proc. of Nonrigid and Articulated Motion Workshop, pp. 90–102 (1997)Google Scholar
  9. 9.
    Jun, L., Hogrefe, D., Jianrong, T.: Video image-based intelligent architecture for human motion capture. Graphics, Vision and Image Processing Journal 5, 11–16 (2005)Google Scholar
  10. 10.
    Ivanescu, M.: Industrial robots, pp. 149–186. Universitaria, Craiova (1994)Google Scholar
  11. 11.
    Ortega, R., Spong, M.W.: Adaptive motion control of rigid robots: a tutorial. Automatica 25, 877–888 (1999)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Dumbrava, S., Olah, I.: Robustness analysis of computed torque based robot controllers. In: 5-th Symposium on Automatic Control and Computer Science, Iasi, pp. 228–233 (1997)Google Scholar
  13. 13.
    Gupta, M.M., Rao, D.H.: Neuro-Control Systems. IEEE Computer Society Press, Los Alamitos (1994)Google Scholar
  14. 14.
    Ozaki, T., Suzuki, T., Furuhashi, T.: Trajectory control of robotic manipulators using neural networks. IEEE Transaction on Industrial Electronics 38, 641–657 (1991)CrossRefGoogle Scholar
  15. 15.
    Liu, Y.G., Li, Y.M.: Dynamics and Model-based Control for a Mobile Modular Manipulator. Robotica 23, 795–797 (2005)CrossRefGoogle Scholar
  16. 16.
    Miyamoto, H., Kawato, M., Setoyama, T.: Feedback error learning neural networks for trajectory control of a robotic manipulator. Neural Networks 1, 251–265 (1998)CrossRefGoogle Scholar
  17. 17.
    Pham, D.T., Oh, S.J.: Adaptive control of a robot using neural networks. Robotica, 553–561 (2004)Google Scholar
  18. 18.
    Popescu, D.: Neural control of manipulators using a supervisory algorithm. In: A&Q 1998 Int. Conf. on Automation and Quality Control, Cluj-Napoca,pp. A576–A581 (1998)Google Scholar
  19. 19.
    Zalzala, A., Morris, A.: Neural networks for robotic control, pp. 26–63. Prentice-Hall, Englewood Cliffs (1996)Google Scholar
  20. 20.
    Poboroniuc, M., Popescu, C.D., Ignat, B.: Functional Electrical Stimulation. Neuroprostheses control, Politehnium Iasi (2005)Google Scholar
  21. 21.
    SIMI MOTION ManualGoogle Scholar
  22. 22.
    Poboroniuc, M., Stefan, C., Petrescu, M., Livint, G.: FES-based control of standing in paraplegia by means of an improved knee extension controller. In: 4th International Conference on Electrical and Power Engineering EPE 2006, Bulletin of the Polytechnic Institute of Iasi, tom LII (LIV), Fasc.5A, pp. 517–522 (2006)Google Scholar
  23. 23.
    Riener, R., Fuhr, T.: Patient-driven control of FES-supported standing up: a simulation study. IEEE Trans. Rehabil. Eng. 6, 113–124 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Dorin Popescu
    • 1
  • Dan Selişteanu
    • 1
  • Marian S. Poboroniuc
    • 2
  • Danut C. Irimia
    • 2
  1. 1.Department of Automation & MechatronicsUniversity of CraiovaCraiovaRomania
  2. 2.Faculty of Electrical Engineering“Gh. Asachi” Technical University of IasiIasiRomania

Personalised recommendations