Advertisement

Emergency Distribution Scheduling with Maximizing Marginal Loss-Saving Function

  • Yiping Jiang
  • Lindu Zhao
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 10)

Abstract

In this paper, we focus on the problem that reduces the loss of human lives and properties as much as possible in emergency response management. This problem is formulated as a combinatorial optimal problem of emergency resource allocation and distribution. Firstly we propose an exponential marginal loss-saving function as a decision-making tool to allocate the scarce emergency resource. Secondly, we propose an emergency distribution scheduling model through introducing time-space network, and then construct an integrated model that combined the marginal loss-saving function and time-space-based distribution model. Finally, we explore the optimal solution of this combinatorial problem through a numerical example. Our work in this paper can provide a tactical and operational method to allocate scarce emergency resource and make distribution scheduling for emergency response agencies.

Keywords

Distribution Scheduling Maximizing Marginal Loss Saving Exponential Function Time-Space Network Emergency Response 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sheu, J.B.: Challenges of emergency logistics management. Transport Res E-Log (2007), doi:10.1016/j.tre.2007.01.001Google Scholar
  2. 2.
    Barbarosoglu, G., Özdamar, L., Çevik, A.: An interactive approach for hierarchical analysis of helicopter logistics in disaster relief operations. Eur. J. Oper. Res (2002), doi:10.1016/S0377-2217(01)00222-3Google Scholar
  3. 3.
    Tzeng, G.H., Cheng, H.J., Huang, T.D.: Multi-objective optimal planning for designing relief delivery systems. Transport Res. E-Log. (2007), doi:10.1016/j.tre.2006.10.012Google Scholar
  4. 4.
    Chang, M.S., Tseng, Y.L., Chen, J.W.: A scenario planning approach for the flood emergency logistics preparation problem under uncertainty. Transport Res. E-Log (2007), doi:10.1016/j.tre.2006.10.013Google Scholar
  5. 5.
    Yuan, Y., Wang, D.W.: Path selection model and algorithm for emergency logistics management. Compu. Ind. Eng. (2009), doi:10.1016/j.cie.2008.09.033Google Scholar
  6. 6.
    Nolz, P., Doerner, K., Gutjahr, W., Hartl, R.: A bi-objective metaheuristic for disaster relief operation planning. Adv. Adv. in Multi-Obj. Nature Inspired Computing (2010), doi:10.1007/978-3-642-11218-8_8Google Scholar
  7. 7.
    Yi, W., Kumar, A.: Ant colony optimization for disaster relief operations. Transport Res. E-Log. (2007), doi:10.1016/j.tre.2006.05.004Google Scholar
  8. 8.
    Yi, W., Ozdamar, L.: A dynamic logistics coordination model for evacuation and support in disaster response activities. Eur. J. Oper. Res (2007), doi:10.1016/j.ejor.2005.03.077Google Scholar
  9. 9.
    Chiu, Y., Zheng, H.: Real-time mobilization decisions for multi-priority emergency response resources and evacuation groups: model formulation and solution. Transport Res. E-Log (2007), doi:10.1016/j.tre.2006.11.006Google Scholar
  10. 10.
    Yan, S.Y., Shih, Y.L.: Optimal scheduling of emergency roadway repair and subsequent relief distribution. Comput. Oper. Res (2009), doi:10.1016/j.cor.2008.07.002Google Scholar
  11. 11.
    Ozdarmar, L., Ekinci, D., Kucukyazici, B.: Emergency logistics planning in Natural Disasters. Ann. Oper. Res. (2004), doi:10.1023/B:ANOR.0000030690.27939.39Google Scholar
  12. 12.
    Barbarosoglu, G., Arda, Y.: A two-stage stochastic programming framework for transportation planning in disaster response. J. Oper. Res. Soc. (2004), http://www.jstor.org/stable/4101826
  13. 13.
    Sheu, J.B.: An emergency logistics distribution approach for quick response to urgent relief demand in disasters. Transport Res. E-Log. (2007), doi:10.1016/j.tre.2006.04.004Google Scholar
  14. 14.
    Sheu, J.B.: Dynamic relief-demand management for emergency logistics operations under large-scale disasters. Transport Res. E-Log. (2010), doi:10.1016/j.tre.2009.07.005Google Scholar
  15. 15.
    Gong, Q., Batta, R.: Allocation and reallocation of ambulances to casualty clusters in a disaster relief operation. IIE Trans. (2007), doi:10.1080/07408170600743938Google Scholar
  16. 16.
    Arora, H., Raghu, T.S., Vinze, A.S.: Resource allocation for demand surge mitigation during disaster response. Decis. Support Syst (2010), doi:10.1016/j.dss.2010.08.032Google Scholar
  17. 17.
    Wright, P.D., Matthew, J.L., Robert, L.N.: A survey of operations research models and applications in homeland security. Interfaces (2006), doi:10.1287/inte.1060.0253Google Scholar
  18. 18.
    Green, L.V., Kolesar, P.J.: Improving Emergency Responsiveness with Management Science. Manage. Sci (2004), http://www.jstor.org/stable/30046126
  19. 19.
    Altay, N., Green, W.G.: OR/MS research in disaster operations management. Eur. J. Oper. Res. (2006), doi:10.1016/j.ejor.2005.05.016Google Scholar
  20. 20.
    Simpson, N., Hancock, P.: Fifty years of operational research and emergency response. J. Oper. Res. Soc. (2009), doi:10.1057/jors.2009.3Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Yiping Jiang
    • 1
  • Lindu Zhao
    • 1
  1. 1.Institute of Systems EngineeringSoutheast UniversityNanjingChina

Personalised recommendations