Advertisement

Difficulty Estimator for Converting Natural Language into First Order Logic

  • Isidoros Perikos
  • Foteini Grivokostopoulou
  • Ioannis Hatzilygeroudis
  • Konstantinos Kovas
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 10)

Abstract

The NLtoFOL system is an interactive web-based system for learning to convert natural language (NL) sentences into first order logic (FOL). In this paper, we present a difficulty estimating expert system that determines the difficulty level of a sentence’s conversion process. Our approach is based on the complexity of the corresponding FOL formula instead of the NL sentence itself. Parameters like the number, the type and the order of quantifiers, the number of implications and the number of different connectives are taken into account. Experimental results show that for a significant part of sentences the difficulty estimating system produces the correct outputs.

Keywords

Difficulty Estimation Natural Language Formalization First Order Logic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alonso, J.A., Aranda, G.A., Martín-Matceos, F.J.: FITS: Formalization with an Intelligent Tutor System. In: Proceedings of the IV International Conference on Multimedia and Information and Communication Technologies in Education (2006)Google Scholar
  2. 2.
    Alonso, J.A., Aranda, G.A., Martn–Mateos, F.J.: KRRT: Knowledge representation and reasoning tutor system. In: Moreno Díaz, R., Pichler, F., Quesada Arencibia, A. (eds.) EUROCAST 2007. LNCS, vol. 4739, pp. 400–407. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Barker-Plummer, D., Cox, R., Dale, R.: Dimensions of Difficulty in Translating Natural Language into First-Order Logic. In: 2nd International conference on Educational Data Mining, Cordoba, Spain, pp. 220–228 (2009)Google Scholar
  4. 4.
    Brachman, R.J., Levesque, H.J.: Knowledge Representation and Reasoning. Elsevier, Amsterdam (2004)Google Scholar
  5. 5.
    Friedman-Hill, E.: Jess in Action: Rule-Based Systems in Java. Manning Publications Company (2003)Google Scholar
  6. 6.
    Genesereth, M.R., Nilsson, N.J.: Logical Foundations of AI. Morgan Kaufmann, Palo Alto (1987)Google Scholar
  7. 7.
    Hatzilygeroudis, I.: Teaching NL to FOL and FOL to CL Conversions. In: Proceedings of the 20th International FLAIRS Conference, Key West, FL, pp. 309–314. AAAI Press, Menlo Park (2007)Google Scholar
  8. 8.
    Hatzilygeroudis, I., Perikos, I.: A web-based interactive system for learning NL to FOL conversion. In: Damiani, E., Jeong, J., Howlett, R.J., Jain, L.C. (eds.) New Directions in Intelligent Interactive Multimedia Systems and Services - 2. SCI, vol. 226, pp. 297–307. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Koutsojannis, C., Beligiannis, G., Hatzilygeroudis, I., Papavlasopoulos, C., Prentzas, J.: Using a hybrid Al approach for exercise difficulty level adaptation. International Journal of Continuing Engineering Education and Life-Long Learning 17(4-5), 256–272 (2007)CrossRefGoogle Scholar
  10. 10.
    Russell, S., Norvig, P.: Artificial Intelligence: a modern approach, 2nd edn. Prentice Hall, Upper Saddle River (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Isidoros Perikos
    • 1
  • Foteini Grivokostopoulou
    • 1
  • Ioannis Hatzilygeroudis
    • 1
  • Konstantinos Kovas
    • 1
  1. 1.School of Engineering Department of Computer Engineering & InformaticsUniversity of PatrasPatrasGreece

Personalised recommendations