Advertisement

Biomass Estimation for an Anaerobic Bioprocess Using Interval Observer

  • Elena M. Bunciu
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 10)

Abstract

This work deals with the analysis of an anaerobic digestion process model and its biomass estimation using an interval observer. In this paper a two step mass balance model is presented. Due the fact that we don’t know the influent substrate, as quantity or shape, but we know its upper and lower limit, we can estimate the quantity of biomass only by using an interval observer. As we know, this two step model has incorporated electrochemical equilibrium, for including the alkalinity that helps to a better control strategy of the plant in which the reactions are taken place.

Keywords

Interval observer anaerobic process acidogenesis-methanization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Moisan, M., Bernard, O., Gouze, J.-L.: A high/low gain bundle of observers: application to the input estimation of abioreactor model. In: Proceedings of the 17th World Congress The International Federation of Automatic Control, Seoul, Korea, pp. 15547–15552 (2008)Google Scholar
  2. 2.
    Angelidaki, I., Ellegaard, L., Ahring, B.K.: Applications of the anaerobic digestion process. In: Biomethanation II, pp. 1–33. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Goffaux, G., Vande Wouwer, A.: Bioprocess State Estimation: Some Classical and Less Classical Approaches. In: Control and Observer Design for Nonlinear Finite and Infinite Dimensional Systems, pp. 111–128. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Moisan, M., Bernard, O.: Interval observers for non monotone systems. application to bioprocess models. In: Proc. of the 16th IFAC World Conf., Prague, Czech Republic (2005)Google Scholar
  5. 5.
    Andrews, J.F.: A Mathematical Model for the Continous Culture of Microorganisms Utilizing Inhibitory Substrates. Biotechnology and Bioengineering 10, 707–723 (1968)CrossRefGoogle Scholar
  6. 6.
    Batstone, D.J., Keller, J., Angelidaki, I., Kalyuzhnyi, S.V., Pavlostathis, S.G., Rozzi, A., Sanders, W.T.M., Siegrist, H., Vavilin, V.A.: Anaerobic Digestion Model No. 1 (ADM1). Scientific and Technical Report, vol. 13. IWA Publishing (2002)Google Scholar
  7. 7.
    Hess, J., Bernard, O.: Design and study of a risk management criterion for an unstable anaerobic wastewater treatment process. Elsevier, Amsterdam (2007)Google Scholar
  8. 8.
    Bernard, O., Le Dantec, B., Chachuat, B., Steyer, J.-P., Lardon, L., Lambert, S., Ratini, P., Lema, J., Ruiz, G., Rodriguez, J., Vanrolleghem, P., Zaher, U., De Pauw, D., De Neve, K., Lievens, K., Dochain, D., Schoefs, O., Farina, R., Alcaraz- Gonzalez, V., Gonzlez-Alvarez, V., Lemaire, P., Martinez, J.A., Duclaud, O., Lavigne, J.F.: An integrated system to remote monitor and control anaerobic wastewater treatment plants through the internet. Water Science and Technology 52, 457–464 (2005)Google Scholar
  9. 9.
    Gonzales, V.A.: Estimation et commande robust non-lineaires des procedes biologiques de depollution des eaux uses. Application a la digestion anaerobie. These de l’Université de Perpignan (2001)Google Scholar
  10. 10.
    Bernard, O., Sadok, Z., Dochain, D.: Dynamical model development and parameter identidication for an anaerobic wastewater treatment processGoogle Scholar
  11. 11.
    Petre, E.: Nonliniar automated systems. Applications in Bioengineering. Universitaria Craiova (2008)Google Scholar
  12. 12.
    Petre, E., Selisteanu, D., Sendrescu, D., Ionete, C.: Neural networks based adaptive control for a class of nonlinear bioprocesses. In: Lovrek, I., Howlett, R.J., Jain, L.C. (eds.) KES 2008, Part II. LNCS (LNAI), vol. 5178, Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Elena M. Bunciu
    • 1
  1. 1.Department of Automatic ControlUniversity of CraiovaCraiovaRomania

Personalised recommendations