Skip to main content

Near-Space Vehicles in High-Resolution Wide-Swath Remote Sensing

  • Chapter
  • First Online:
Book cover Near-Space Remote Sensing

Part of the book series: SpringerBriefs in Electrical and Computer Engineering ((BRIEFSELECTRIC))

  • 1068 Accesses

Abstract

Spaceborne SAR has an imaging capability of wide-swath (the width of the ground area covered by the radar beam) with a limited azimuth resolution. By contrast, airborne SAR has an imaging capability of high azimuth resolution, but limited swath coverage. There is, therefore, a desire to increase swath coverage and azimuth resolution simultaneously. As near-space vehicles operate at altitudes higher than that of airplanes but lower than satellites with a high flying speed, compared to spaceborne and airborne SARs, simultaneous relative high-resolution and wide-swath (HRWS) remote sensing is possible for near-space vehicle-borne SAR. In this chapter, we explained how near-space vehicles could be exploited for future HRWS remote sensing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li, Z.F., Wang, H.Y., Su, T., Bao, Z.: Generation of wide-swath and high-resolution SAR images from multichannel small spaceborne SAR systems. IEEE. Geosci. Remote. Sens. Lett. 2, 82–86 (2005)

    Article  Google Scholar 

  2. Currie, A., Brown, M.A.: Wide-swath SAR. IEE. Radar. Signal. Process. 139, 122–135 (1992)

    Article  Google Scholar 

  3. Curlander, J.C., McDonough, R.N.: Synthetic Aperture Radar: Systems and Signal Processing. John Wiley & Sons, Inc. (1991)

    MATH  Google Scholar 

  4. The paradigm shift of effects-based space: near-space as a combat space effects enabler. http://www.airpower.au.af.mi. Accessed May 2010

  5. Suess M., Grafmuller B., Zahn R.: A novel high resolution, wide swath SAR system. In: Proceeings of IEEE Int Geosci Remote Sens Symposium, Sydney, Australia 1013–1015 (2001)

    Google Scholar 

  6. Suess M., Zubler M., Zahn R.: Performance investigation on the high resolution, wide swath SAR system. In: Proceedings of European Synthetic Aperture Radar Conference, Cologne, Germany 187–191 (2002)

    Google Scholar 

  7. Heer C., Soualle F., Zahn R., Reber R.: Investigations on a new high resolution wide swath SAR concept. In: Proceedings of IEEE Int Geosci Remote Sens Symp, Toulouse, France 521–523 (2003)

    Google Scholar 

  8. Gebert N., Krieger G., Moreira A.: High resolution wide swath SAR imaging— system performance and influence of perturbations. In: Proceedings of Int Radar Symp, Berlin, Germany 1–5 (2005)

    Google Scholar 

  9. Gebert, N., Krieger, G.: Azimuth phase center adaptation on transmit for high-resolution wide-swath SAR imaging. IEEE. Geosci. Remote. Sens. Lett. 6, 782–786 (2009)

    Article  Google Scholar 

  10. Gebert N., Krieger G., Younis M., Bordoni F., Moreira A.: Ultra wide swath imaging with multi-channel ScanSAR. In: Proceedings of IEEE Int Geosci Remote Sens Symp, Boston, Massachusetts 21–24 (2008)

    Google Scholar 

  11. Younis M., Bordoni F., Gebert N., Krieger G.: Smart multi-channel radar techniques for spaceborne remote sensing. In: Proceedings of IEEE Int Geosci Remote Sens Symp, Boston, Massachusetts 278–281 (2008)

    Google Scholar 

  12. Stiles J., Goodman N., SiChung L.: Performance and processing of SAR satellite clusters. In: Proceedings of IEEE Int Geosci Remote Sens Symp, Honolulu, Hawaii 883–885 (2000)

    Google Scholar 

  13. Goodman, N., Lin, S., Rajakrishna, D., Stiles, J.: Processing of multiple-receiver spaceborne arrays for wide-area SAR. IEEE. Trans. Geosci. Remote. Sens. 40, 841–852 (2002)

    Article  Google Scholar 

  14. Aguttes J.P.: The SAR train concept: An along track formation of SAR satellites for diluting the antenna area over N smaller satellites, while increasing performance by N. In: Proceedings of 55th Int Astronautical Congress, Vancouver, Canada 919–925 (2004)

    Google Scholar 

  15. Aguttes J.P.: The SAR train concept: required antenna area distributed over N smaller satellites, increase of performance by N. In: Proceedings of IEEE Int Geosci Remote Sens Symp, Toulouse, France 542–544 (2003)

    Google Scholar 

  16. Griffiths H., Mancini P.: Ambiguity suppression in SARs using adaptive array techniques. In: Proceedings of IEEE Geoscience and Remote Sensing Symposium, Espoo, Finland 1015–1018 (1991)

    Google Scholar 

  17. Callaghan, G.D., Longstaff, I.D.: Wide-swath spaceborne SAR using a quad-element array. IEE. Radar. Sonar. Navig. 146, 159–165 (1999)

    Article  Google Scholar 

  18. Fischer C., Heer C., Krieger G., Werninghaus R.: A high resolution wide swath SAR system. In: Proceedings of European Synthetic Aperture Rdar Conference, Dresden, Germany 1–4 (2006)

    Google Scholar 

  19. Li, Z.F., Bao, Z., Wang, H., Liao, G.S.: Performance improvement for constellation SAR using signal processing techniques. IEEE. Trans. Aerosp. Electron. Syst. 42, 436–452 (2006)

    Article  Google Scholar 

  20. Li, Z.F., Bao, Z.: A novel approach for wide-swath and high-resolution SAR image generation from distributed small spaceborne SAR systems. Int. J. Remote. Sens. 27, 1015–1033 (2006)

    Article  Google Scholar 

  21. Jain, A.: Multibeam synthetic aperture radar for global occanography. IEEE. Trans. Antenna. Propag.27, 535–538 (1979)

    Article  Google Scholar 

  22. Jean, B.R., Rouse, J.W.: A multiple beam synthetic aperture radar design concept for geoscience applications. IEEE. Trans. Geosci. Remote. Sens. 21, 201–207 (1983)

    Article  Google Scholar 

  23. Goodman N., Rajakrishana D., Stiles J.: Wide swath, high resolution SAR using multiple receiver apertures. In: Proceedings of IEEE Int Geosci Remote Sens Symposium, Hamburg, Germany 1767–1769 (1999)

    Google Scholar 

  24. Krieger, G., Moreira, A.: Spaceborne bi- and multistatic SAR: potential and challenges. IEE. Radar. Sonar. Navig. 153, 184–198 (2006)

    Article  Google Scholar 

  25. Wang WQ (2010) Bistatic Synthetic Aperture Radar Synchronization Processing. In: Kouemou G (ed) Radar Technology. In-Tech Press, India

    Google Scholar 

  26. Wang, W.Q.: Multi-Antenna Synthetic Aperture Radar Imaging: Principles and Applications, In Chinese. National Defense Industry Press, Beijing (2011)

    Google Scholar 

  27. Krieger, G., Gebert, N., Moreira, A.: Multidimensional waveform encoding: a new digital beamforming technique for synthetic aperture radar remote sensing. IEEE. Trans. Geosci. Remote. Sens. 46, 31–46 (2008)

    Article  Google Scholar 

  28. Younis M., Venot Y., Wiesbeck J.: Digital beam forming on-receive-only for radar applications. In: Proceedings of German Radar Symposium, Bonn, Germany 213–217 (2002)

    Google Scholar 

  29. Younis M.: Digital beam-forming for high resolution wide swath real and synthetic aperture rdar, Dissertation, Karlsruhe, Germany (2004)

    Google Scholar 

  30. Krieger G., Fiedler H., Rodriguez-Cassola M., Hounam D., Moreira A.: Analysis of system concepts for bi-and multi-static SAR missions. In: Proceedings of IEEE Geosci Remote Sens Symposium, Toulouse, France 770–772 (2003)

    Google Scholar 

  31. Krieger, G., Gebert, N., Moreira, A.: Unambiguous SAR signal reconstruction from nonuniform displaced phase center sampling. IEEE. Geosci. Remote. Sens. Lett. 1, 260–264 (2004)

    Article  Google Scholar 

  32. Krieger G., Gebert N., Moreira A.: SAR signal reconstruction from non-uniform displaced phase center sampling. In: Proceedings of IEEE Int Geosci Remote Sens Symposium, Anchorage, Alaska 1763–1766 (2004)

    Google Scholar 

  33. Krieger G., Gebert N., Moreira A. (2004) Digital beamforming and non-uniform displaced phase centre sampling in bi-and multistatic SAR. In: Proc of European Synthetic Aperture Radar Conf, Ulm, Germany 563–566

    Google Scholar 

  34. Gebert N., Krieger G., Moreira A.:SAR signal reconstruction from non-uniform displaced phase centre sampling in the presence of perturbations. In: Proceedings of IEEE Int Geosci Remote Sens Symposium, Seoul, Korea 1034–1037 (2005)

    Google Scholar 

  35. Gebert N., Krieger G., Moreira A.: High resolution wide swath SAR imaging with digital beamforming-performance analysis, optimization and system design. In: Proceedings of European Synthetic Aperture Radar Conference, Dresden, Germany 341–344 (2006)

    Google Scholar 

  36. Gebert N., Krieger G., Moreira A.: Digital beamforming for HRWS-SAR imaging system design, performance and optimization strategies. In: Proceedings of IEEE Int Geosci Remote Sens Symposium, Denver, Colorado 1836–1839 (2006)

    Google Scholar 

  37. Gebert N., Krieger G., Moreira A.: Multi-channel ScanSAR for high-resolution ultra-wide-swath imaging. In: Proceedings of European Synthetic Aperture Radar Conference, Friedrichshafen, Germany 79–82 (2008)

    Google Scholar 

  38. Claassen J.P., Eckerman J.: A system concept for wide swath constant incident angle coverage. In: Proceedings of Synthetic Aperture Radar Technology Conference, Las Cruces, New Mexico 41–59 (1978)

    Google Scholar 

  39. Bellettini, A., Pinto, M.A.: Theoretical accuracy of synthetic aperture sonar micronavigation using a displaced phase-center antenna. IEEE. J. Oceanic. Enginneer. 27, 780–789 (2002)

    Article  Google Scholar 

  40. Lombardo, P., Colone, F., Pastina, D.: Monitoring and surveillance potentialities obtained by splitting the antenna of the COSMO-SkyMed SAR into multiple sub-apertures. IEE. Proc. Radar. Sonar. Navig. 153, 104–116 (2006)

    Article  Google Scholar 

  41. Wang, W.Q., Cai, J.Y., Peng, Q.C.: Conceptual design of near-space synthetic aperture radar for high-resolution and wide-swath imaging. Aerosp. Sci. Technol.13, 340–347 (2009)

    Article  Google Scholar 

  42. Cumming, I.G., Wong, F.H.: Digital Processing of Synthetic Aperture Radar Data. Artech House, Boston (2005)

    Google Scholar 

  43. Li, F.K., Johnson, W.T.K.: Ambiguities in spaceborne synthetic aperture radar systems. IEEE. Trans. Aerosp. Electron. Syst. 19, 389–397 (1983)

    Article  Google Scholar 

  44. Krieger G., Moreira A.: Potentials of digital beamforming in bi-and multistatic SAR. In: Proceedings of IEEE Geosci Remote Sens Symposium, Toulouse, France 527–529 (2003)

    Google Scholar 

  45. Younis, M., Fischer, C., Wiesbeck, W.: Digital beamforming in SAR systems. IEEE. Trans. Geosci. Remote. Sens.41, 1735–1739 (2003)

    Article  Google Scholar 

  46. Gebert N., Krieger G., Moreira A.: Digital beamforming for HRWS-SAR imaging. In: Proceedings of IEEE Geosci Remote Sens Symposium, Denver, USA 1836–1839 (2006)

    Google Scholar 

  47. Gebert, N., Krieger, G., Moreira, A.: Digital beamforming on receive: techniques and optimization stragies for high-resolution wide-swath SAR imaging. IEEE. Trans. Aerosp. Electron. Syst.45, 564–592 (2009)

    Article  Google Scholar 

  48. Younis M., Patyuchenko A., Huber S., Bordoni F., Krieger G.: Performance comparison of reflector-and planar-antenna based digital beam-forming SAR. Int J Antenna Propag (2010) doi:10.1155/2009/614931

  49. Huber S., Younis M., Patyuchenko A., Krieger G.: Digital beam forming techniques for spaceborne reflector SAR systems. In: Proceedings of European Synthetic Aperture Radar Conference, Aachen, Germany 962–965 (2010)

    Google Scholar 

  50. Wang, W.Q., Peng, Q.C., Cai, J.Y.: Waveform-diversity-based millimeter-wave UAV remote sensing. IEEE. Trans. Geosci. Remote. Sens.47, 691–700 (2009)

    Article  Google Scholar 

  51. Wang, X.Q., Xiao, Q., Chen, Y.Q., Zhu, M.H.: The SNR study of the wide-swath SAR basing on elevation multi-receiver. J. Electron. Info. Technol.29, 2101–2104 (2007)

    MATH  Google Scholar 

  52. Krieger, G., Gebert, N., Moreira, A.: Multidimensional waveform encoding: a new digital beamforming technique for synthetic aperture radar remote sensing. IEEE. Trans. Geosci. Remote. Sens. 46, 31–45 (2008)

    Article  Google Scholar 

  53. Wang W.Q.: Applications of MIMO technique for aerospace remote sensing. In: Proceedings of IEEE Aerospace Conference, Big Sky, MT 1–10 (2007)

    Google Scholar 

  54. Zhuge, X.D., Yarovoy, A.G.: A sparse aperture MIMO-SAR-based UWB imaging systems for concealed weapon detection. IEEE. Trans. Geosci. Remote. Sens. 49, 509–518 (2011)

    Article  Google Scholar 

  55. Cristallini, D., Pastina, D., Lombardo, P.: Exploiting MIMO SAR potentialities with efficient cross-track constellation configurations for improved range resolution. IEEE. Trans. Geosci. Remote. Sens. 49, 38–52 (2011)

    Article  Google Scholar 

  56. Wang W.Q.: Space-time coding MIMO-OFDM SAR for high-resolution imaging. IEEE. Trans. Geosci. Remote. Sens. (2011) doi:10.1109/TGRS.2011.2116030

  57. Picciolo M.S., Griesbach J.D., Gerlach K.: Adaptive LFM waveform diversity. In: Proceedings of IEEE Radar Conference, Rome, Italy, 1–6 (2008)

    Google Scholar 

  58. Levanon, N., Mozeson, E.: Radar Signals. Wiley-IEEE Press, New York (2004)

    Book  Google Scholar 

  59. Kim J.H., Ossowska A., Wiesbeck W.: Investigation of MIMO SAR for interferometry. In: Proceedings of 4th European Radar Conference, Munich Germany 51–54 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Qin Wang .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Wen-Qin Wang

About this chapter

Cite this chapter

Wang, WQ. (2011). Near-Space Vehicles in High-Resolution Wide-Swath Remote Sensing. In: Near-Space Remote Sensing. SpringerBriefs in Electrical and Computer Engineering(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22188-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22188-0_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22187-3

  • Online ISBN: 978-3-642-22188-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics