Skip to main content

Optimization of Fuzzy Logic Controller Design for Maximum Power Point Tracking in Photovoltaic Systems

  • Chapter

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 269))

Abstract

This chapter presents the design and optimization of a fuzzy logic controller (FLC) with a minimum rule base for maximum power point tracking in photovoltaic (PV) systems. A strategy for automated design and optimization of the FLC using genetic algorithms is proposed. An optimal Takagi-Sugeno FLC with a rule base of only 9-rules is realized and compared to the conventional design of 49 or 25 rules. Two FLCs, one using Gaussian input membership functions (MFs) and the other using trapezoidal MFs are designed and their performance compared. Expert knowledge for tuning the FLC is extracted from a PV module model under varying solar radiation, temperature, and load conditions. The proposed method is implemented using C language as a dynamic linked library (.dll format) and simulated using LabVIEW. Simulation results are used to compare the performance of the optimized FLCs in terms of speed, accuracy, and robustness. It is shown that the optimization algorithm produces an optimal FLC for both Gaussian and trapezoidal MFs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baghat, A.B.G., et al.: Maximum power point tracking controller for PV systems using neural networks. Renewable Energy 30(2005), 1257–1268 (2004)

    Google Scholar 

  • Bose, B.K.: Modern Power Electronics and AC Drives. Prentice-Hall, Englewood Cliffs (2001)

    Google Scholar 

  • BP Solar Global Marketing, BP Solar SX 75TU PV module data sheet (2002), http://www.solardepot.com/

  • Hua, C., Shen, C.: Comparative study of peak power tracking techniques for solar storage systems, in Proc. IEEE Appl. In: Power Electron. Conf. and Expo., vol. 2, pp. 676–683 (February 1998)

    Google Scholar 

  • Sullivan, C.R., Powers, M.J.: A high-efficiency maximum power point trackers for photovoltaic array in a solar-powered race vehicle. In: Proc. IEEE PESC, pp. 574–580 (1993)

    Google Scholar 

  • Otieno, C.A., Nyakoe, G.N., Wekesa, C.W.: A Neural Fuzzy Based Maximum Power PointTracker for a Photovoltaic System. In: IEEE Africon, pp. 1–6 (September 2009)

    Google Scholar 

  • Hohm, D.P., Ropp, M.E.: Comparative Study of Maximum Power Point Tracking Algorithms. Progress in Photovoltaics: Research and Applications 11, 47–62 (2003), doi:10.1002/pip.459

    Article  Google Scholar 

  • Koutroulis, E., Kalaitzakis, K., Voulgaris, N.C.: Development of a Microcontroller Based Photovoltaic Maximum Power Point Tracking Control System. IEEE Transactions on Power Electronics 16(1) (2001)

    Google Scholar 

  • Manwell, J.F., et al.: Hybrid2 - A hybrid system simulation model theory manual (2006), http://ceere.org/rerl/projects/software/hybrid2/Hy2theorymanual.pdf

  • Enslin, J.H.R., Snyman, D.B.: Simplified feed-forward control of the maximum power point tracker for photovoltaic applications. In: Proc. Int. Conf. IEEE Power Electron. Motion Control, vol. 1, pp. 548–553 (1992)

    Google Scholar 

  • Enslin, J.R., Wolf, M.S., Snyman, D.B., Sweigers, W.: Integrated photovoltaic maximum power point tracking converter. IEEE Trans. Ind. Electron 44(6), 769–773 (1997)

    Article  Google Scholar 

  • Bodur, M., Ermis, M.: Maximum power point tracking for low power photovoltaic solar panels. In: Proc. IEEE Electro Tech. Conf., vol. 2, pp. 758–761 (1992)

    Google Scholar 

  • Veerachary, M., Senjyu, T., Uezato, K.: Feed-forwardmaximum power point tracking of PV systems using fuzzy controller. IEEE Trans. Aerosp. Electron. Syst. 38(3), 969–981 (2002)

    Article  Google Scholar 

  • Khaehintung, N., Kunakorn, A., Sirisuk, P.: A Novel Fuzzy Logic Control Technique tuned by Particle Swarm Optimization for Maximum Power Point Tracking for a Photovoltaic System using a Current-mode Boost Converter with Bifurcation Control. International Journal of Control, Automation, and Systems 8(2), 289–300 (2010), http://www.springer.com/12555 , doi:10.1007/s12555-010-0215-7.

    Article  Google Scholar 

  • Erickson, R.W., Maksimovic, D.: Fundamentals of Power Electronics, 2nd edn. Kluwer Academic Publishers, Dordrecht (2001)

    Google Scholar 

  • Haupt, R.L., Haupt, S.E.: Practical Genetic Algorithms. John Wiley & Sons, Inc., Hoboken (2004)

    MATH  Google Scholar 

  • Sivanandam, S.N., Deepa, S.N.: Introduction to Genetic Algorithms. Springer, Heidelberg (2008)

    MATH  Google Scholar 

  • Noguchi, T., Togashi, S., Nakamoto, R.: Short-current pulse-based maximum power point tracking method for multiple photovoltaic-and converter module system. IEEE Trans. Ind. Electron. 49(1), 217–223 (2002)

    Article  Google Scholar 

  • Ocran, T.A., et al.: Artificial Neural Network Maximum Power Point Tracker for Solar Electric Vehicle. Tsinghua Science & Technology 10(2), 204–208 (2005)

    Article  Google Scholar 

  • Kohata, Y., Yamauchi, K., Kurihara, M.: Quick Maximum Power Point Tracking of Photovoltaic Using Online Learning Neural Network. In: Leung, C.S., Lee, M., Chan, J.H. (eds.) ICONIP 2009. LNCS, vol. 5863, pp. 606–613. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Letting, L.K., Munda, J.L., Hamam, Y. (2011). Optimization of Fuzzy Logic Controller Design for Maximum Power Point Tracking in Photovoltaic Systems. In: Gopalakrishnan, K., Khaitan, S.K., Kalogirou, S. (eds) Soft Computing in Green and Renewable Energy Systems. Studies in Fuzziness and Soft Computing, vol 269. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22176-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22176-7_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22175-0

  • Online ISBN: 978-3-642-22176-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics