Skip to main content

Use of Soft Computing Techniques in Renewable Energy Hydrogen Hybrid Systems

  • Chapter

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 269))

Abstract

Soft computing techniques are important tools that significantly improve the performance of energy systems. This chapter reviews their many contributions to renewable energy hydrogen hybrid systems, namely those systems that consist of different technologies (photovoltaic and wind, electrolyzers, fuel cells, hydrogen storage, piping, thermal and electrical/electronic control systems) capable as a whole of converting solar energy, storing it as chemical energy (in the form of hydrogen) and turning it back into electrical and thermal energy.

Fuzzy logic decision-making methodologies can be applied to select amongst renewable energy alternative or to vary a dump load for regulating wind turbine speed or find the maximum power point available from arrays of photovoltaic modules. Dynamic fuzzy logic controllers can furthermore be utilized to coordinate the flow of hydrogen to fuel cells or employed for frequency control in micro- grid power systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Al-Alawi, A., Al-Alawi, S., Islam, S.M.: Predictive control of an integrated PV-diesel water and power supply system using an artificial neural network. Renewable Energy 32, 1426–1439 (2007)

    Article  Google Scholar 

  • Bäck, T.: Evolutionary algorithms in theory and practice. Oxford University Press, Oxford (1996)

    MATH  Google Scholar 

  • Bernal-Agustìn, J.L., Dufo-Lòpez, R.: Efficient design of hybrid renewable energy systems using evolutionary algorithms. Energy Conversion and Management 50, 479–489 (2009)

    Article  Google Scholar 

  • Bilodeau, A., Agbossou, K.: Control analysis of renewable energy system with hydrogen storage for residential applications. Journal of Power Sources 162, 757–764 (2006)

    Article  Google Scholar 

  • Deshmukh, S.S., Boehm, R.F.: Review of modeling details related to renewably powered hydrogen systems. Renewable and Sustainable Energy Reviews 9(12), 2301–2330 (2008)

    Article  Google Scholar 

  • Duffie, J.A., Beckman, W.A.: Solar engineering of thermal processes. Wiley, Chichester (2006)

    Google Scholar 

  • Dufo-Lòpez, R., Bernal-Agustìn, J.L., Contreras, J.: Optimization of control strategies for stand-alone renewable energy systems with hydrogen storage. Renewable Energy 32, 1102–1126 (2007)

    Article  Google Scholar 

  • Eiben, A.E., Smith, J.E.: Introduction to evolutionary computing (Natural computing series). Springer, Berlin (2007)

    Google Scholar 

  • El-Shatter, T.F., El-Hagry, M.T., Aboueldahab, M.E., Elkousy, A.A.: Fuzzy modeling and simulation of photovoltaic system. In: Proceedings of the 14th European Photovoltaic Solar Energy Conference, Barcelona, Spain, June 30 -July 4 (1997)

    Google Scholar 

  • El-Shatter, T.F., Eskandar, M.F., El-Hagry, M.T.: Hybrid PV/fuel cell system design and simulation. Renewable Energy 27, 479–485 (2002)

    Article  Google Scholar 

  • Fogel, D.B.: Evolutionary computation toward a new philosophy of machine intelligence, 2nd edn. Wiley-IEEE Press (1999)

    Google Scholar 

  • Garg, H.P.: Treatise on solar energy. Wiley, Chichester (1982)

    Google Scholar 

  • Ghaboussi, J., Garrett Jr., J.H., Wu, X.: Knowledge-Based Modeling of Material Behavior with Neural Networks. ASCE J. Engrg. Mech. 117(1), 132–153 (1991)

    Article  Google Scholar 

  • Goldberg, D.E.: Genetic algorithms in search, optimization and machine learning. Addison-Wesley, Reading (1989)

    MATH  Google Scholar 

  • Hakimi, S.M., Moghaddas-Tafreshi, S.M.: Optimal sizing of a stand-alone hybrid power system via particle swarm optimization for Kahnouj area in south-east of Iran. Renewable Energy 34, 1855–1862 (2009)

    Article  Google Scholar 

  • Hammache, A., Bilgen, E.: Photovoltaic hydrogen production for remote communities in northern latitudes. Solar & Wind Technology 2(4), 139–144 (1987)

    Article  Google Scholar 

  • Hatti, M., Tioursi, M.: Dynamic neural network controller model of PEM fuel cell system. International Journal of Hydrogen Energy 34, 5015–5021 (2009)

    Article  Google Scholar 

  • Haykin, S.: Neural networks: a comprehensive foundation, 2nd edn. Macmillan, New York (1999)

    MATH  Google Scholar 

  • Hollenberg, J.W., Chen, E.N., Lakeram, K., Modroukas, D.: Development of a photovoltaic energy conversion system with hydrogen energy storage. Int. J. Hydrogen Energy 3(20), 239–243 (1995)

    Article  Google Scholar 

  • Jarboui, B., Damak, N., Siarry, P., Rebai, A.: A combinatorial particle swarm optimization for solving multi-mode resource-constrained project scheduling problems. Appl. Math. Computing 195, 299–308 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Kahraman, C., Beşkese, A., Tunç Bozbura, F.: Fuzzy Regression Approaches and Applications. Studies in Fuzziness and Soft Computing, vol. 201, pp. 589–615. Springer, Heidelberg (2006)

    Google Scholar 

  • Kahraman, C., Kaya, I., Cebi, S.: A comparative analysis for multiattribute selection among renewable energy alternatives using fuzzy axiomatic design and fuzzy analytic hierarchy process. Energy 34, 1603–1616 (2009)

    Article  Google Scholar 

  • Kalogirou, S.A.: Artificial neural networks in renewable energy systems applications: a review. Renewable and Sustainable Energy Reviews 5, 373–401 (2001)

    Article  Google Scholar 

  • Kashefi Kaviani, A., Riahy, G.H., Kouhsari, S.M.: Optimal design of a reliable hydrogen-based stand-alone wind/PV generating system, considering compo-nent outages. Renewable Energy 34, 2380–2390 (2009)

    Article  Google Scholar 

  • Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of the 1995 IEEE International Conference on Neural Networks, Perth, Australia, vol. 4, pp. 1942–1948. IEEE Service Center, Piscataway (1995)

    Chapter  Google Scholar 

  • Khan, M.J., Iqbal, M.T.: Analysis of a small wind-hydrogen stand-alone hybrid energy system. Applied Energy 86, 2429–2442 (2009)

    Article  Google Scholar 

  • Kolhe, M., Agbossou, K., Hamelin, J., Bose, T.K.: Analytical model for predicting the performance of photovoltaic array coupled with a wind turbine in a stand-alone renewable energy system based on hydrogen. Renewable Energy 28, 727–742 (2003)

    Article  Google Scholar 

  • Lagorse, J., Paire, D., Miraoui, A.: Sizing optimization of a stand-alone street lighting system powered by a hybrid system using fuel cell, PV and battery. Renewable Energy 34, 683–691 (2009)

    Article  Google Scholar 

  • Lakhmi, C.J., Martin, N.M.: Fusion of neural networks, fuzzy systems and genetic algorithms: industrial applications. CRC Press LLC, Boca Raton (1998)

    Google Scholar 

  • Li, X., Song, Y.J., Han, S.B.: Frequency control in micro-grid power system combined with electrolyzer system and fuzzy PI controller. Journal of Power Source 180, 468–475 (2008)

    Article  Google Scholar 

  • Liu, B.Y.H., Jordan, R.C.: The long term average performance of flat plate solar energy collectors. Solar Energy 7, 53–70 (1963)

    Article  Google Scholar 

  • Machado, R.J., Rocha, A.F.: A hybrid architecture for fuzzy connec tionist expert systems. In: Kandel, A., Langholz, G. (eds.) Hybrid Architectures for Intelligent Systems, CRC Press, Boca Raton (1992)

    Google Scholar 

  • Maclay, J.D., Brouwer, J., Samuelsen, G.S.: Dynamic modeling of hybrid energy storage systems coupled to photovoltaic generation in residential applications. Journal of Power Source 163, 916–925 (2007)

    Article  Google Scholar 

  • Mellit, A., Kalogirou, S.A.: Artificial intelligence techniques for photovoltaic applications: A review. Progress in Energy Combustion Science 34, 574–632 (2008)

    Article  Google Scholar 

  • Miland, H., Glöckner, R., Taylor, P., Aaberg, R.J., Hagen, G.: Load control of a wind-hydrogen stand-alone power system. International Journal of Hydrogen Energy 31, 1215–1235 (2005)

    Article  Google Scholar 

  • Miranda, V., Srinivasan, D., Proenca, L.M.: Evolutionary computation in power systems. International Journal of Electrical Power & Energy Systems 20(2), 89–98 (1998)

    Article  Google Scholar 

  • NeuroShells (2007) An ANN development software from ward systems group. Inc., http://www.wardsystems.com

  • Parasopoulos, K.E., Vrahatis, M.N.: On the computation of all global minimizers through particle swarm optimization. IEEE Trans. Evol. Comput. 3, 8 (2004)

    Google Scholar 

  • Pedrazzi, S., Zini, G., Tartarini, P.: Complete modeling and software implementation of a virtual solar hydrogen hybrid system. Energy Conversion and Management 51, 122–129 (2010)

    Article  Google Scholar 

  • Penner, S.S.: Steps toward the hydrogen economy. Energy 31, 33–43 (2006)

    Article  Google Scholar 

  • Robert, F.: Neural Fuzzy Systems. Abo Akademi University (1995)

    Google Scholar 

  • Romm, J. (ed.): The hype about hydrogen: fact and fiction in the race to save the climate. Island Press (2004)

    Google Scholar 

  • Sarimveis, H., Alexandridis, A., Tsekouras, G., Bafas, G.: A fast and efficient algorithm for training radial basis function neural networks based on a fuzzy partition of the input space. Ind. Eng. Chem. Res. 41, 751–759 (2002)

    Article  Google Scholar 

  • Schmitt Lothar, M.: Theory of generic algorithms. Theoretical Computer Science 259(1-2), 1–61 (2001)

    Article  MathSciNet  Google Scholar 

  • Shahin, M.A., Jaksa, M.B., Maier, H.R.: Artificial neural network applications in geotechnical engineering. Australian Geomechanics 36(1), 49–62 (2001)

    Google Scholar 

  • Ulleberg, Ø.: Modeling of advanced electrolyzers: a system simulation approach. Int. J. Hydrogen Energy 28, 21–33 (2003)

    Article  Google Scholar 

  • Ulleberg, Ø., Morner, S.O.: Trnsys simulation models for solar hydrogen systems. Solar Energy 4-6(59), 271–279 (1997)

    Article  Google Scholar 

  • Yager, R.R.: Fuzzy Sets and Applications: Selected Papers by L.A. Zadeh. John Wiley, New York (1987)

    Google Scholar 

  • Yu, H.H., Jenq-Neng, H.: Handbook of neural network signal processing. CRC press, Boca Raton (2001)

    Google Scholar 

  • Zadeh, L.A.: Fuzzy sets. Inform Control 8, 338–353 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  • Zadeh, L.A.: A fuzzy-set-theoretic interpretation of linguistic hedges. Cyber Net 2, 4–34 (1972)

    Article  MathSciNet  Google Scholar 

  • Zadeh, L.A.: Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans. Syst. Man Cybernet 3, 28–44 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  • Zeng, J., An, M., Smith, N.J.: Application of a fuzzy based decision making methodology to construction project risk assessment. International Journal of Project Management 25, 589–600 (2007)

    Article  Google Scholar 

  • Zervas, P.L., Sarimvies, H., Palyvos, J.A., Markatos, N.G.C.: Model-based optimal control of a hybrid power generation system consisting of photovoltaic arrays and fuel cells. Journal of Power Source 181, 327–338 (2008)

    Article  Google Scholar 

  • Zini, G., Tartarini, P.: Wind-hydrogen energy stand-alone system with carbon storage: Modeling and simulation. Renewable Energy 35, 2461–2467 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zini, G., Pedrazzi, S., Tartarini, P. (2011). Use of Soft Computing Techniques in Renewable Energy Hydrogen Hybrid Systems. In: Gopalakrishnan, K., Khaitan, S.K., Kalogirou, S. (eds) Soft Computing in Green and Renewable Energy Systems. Studies in Fuzziness and Soft Computing, vol 269. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22176-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22176-7_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22175-0

  • Online ISBN: 978-3-642-22176-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics