Skip to main content

Improving the Imaging Speed of AFM with Modern Control Techniques

  • Chapter
Control Technologies for Emerging Micro and Nanoscale Systems

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 413))

Abstract

In Atomic Force Microscopy (AFM), the dynamics and non-linearities of the positioning stage are major sources of image artifacts and distortion, especially when imaging at high-speed. This contribution discusses some recent developments to compensate for these adverse effects of the positioning stage dynamics in high-speed AFM by utilizing modern control methods. The improvements on both the lateral scanning motion and in controlling the tip-sample interaction force are demonstrated to allow significantly faster, and more accurate AFM imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramovitch, D., Andersson, S., Pao, L., Schitter, G.: A tutorial on the mechanisms, dynamics, and control of atomic force microscopes. In: Proc. Amer. Control Conf., pp. 3488–3502 (2007)

    Google Scholar 

  2. Alexander, S., Hellemans, L., Marti, O., Schneir, J., Elings, V., Hansma, P., Longmire, M., Gurley, J.: An atomic-resolution atomic-force microscope implemented using an optical lever. J. Appl. Phys. 65, 164 (1989)

    Article  Google Scholar 

  3. Ando, T., Kodera, N., Naito, Y., Kinoshita, T., Furuta, K., Toyoshima, Y.: A high-speed atomic force microscope for studying biological macromolecules in action. Chem. Phys. Chem. 4(11), 1196–1202 (2003)

    Google Scholar 

  4. Ando, T., Kodera, N., Takai, E., Maruyama, D., Saito, K., Toda, A.: A high-speed atomic force microscope for studying biological macromolecules. Proc. Nat. Acad. Sci. 98(22), 12468–12472 (2001)

    Article  Google Scholar 

  5. Arimoto, S., Kawamura, S., Miyazaki, F.: Bettering operation of robots by learning. J. Robotic Syst. 1(2), 123–140 (1984)

    Article  Google Scholar 

  6. Bhikkaji, B., Ratnam, M., Fleming, A., Moheimani, S.: High performance control of piezoelectric tube scanners. IEEE Trans. Control Syst. Technol. 15, 853–866 (2007)

    Article  Google Scholar 

  7. Binnig, G., Quate, C., Gerber, C.: Atomic force microscope. Phys. Rev. Lett. 56(9), 930–933 (1986)

    Article  Google Scholar 

  8. Binnig, G., Smith, D.: Single-tube three-dimensional scanner for scanning tunneling microscopy. Rev. Sci. Instrum. 57, 1688–1698 (1986)

    Article  Google Scholar 

  9. Cole, D., Clark, R.: Adaptive compensation of piezoelectric sensoriactuators. J. Intell. Mater. Syst. Struc. 5, 665–672 (1994)

    Article  Google Scholar 

  10. Croft, D., Devasia, S.: Vibration compensation for high speed scanning tunneling microscopy. Rev. Sci. Instrum. 70, 4600–4605 (1999)

    Article  Google Scholar 

  11. Croft, D., Shed, G., Devasia, S.: Creep, hysteresis, and vibration compensation for piezoactuators: Atomic force microscopy applications. AMSE J. Dyn. Syst. Meas. Control 123, 35–43 (2001)

    Article  Google Scholar 

  12. Dosch, J., Inman, D., Garcia, E.: A self-sensing piezoelectric actuator for collocated control. J. Intell. Mater. Syst. Struc. 3, 166–185 (1992)

    Article  Google Scholar 

  13. Fleming, A.: High-speed vertical positioning for contact-mode atomic force microscopy. In: Proc. IEEE/ASME Inter. Conf. Advan. Intell. Mechatron., Singapore, pp. 522–527 (2009)

    Google Scholar 

  14. Fleming, A., Moheimani, S.: Sensorless vibration suppression and scan compensation for piezoelectric tube nanopositioners. IEEE Trans. Control Syst. Technol. 14, 33–44 (2006)

    Article  Google Scholar 

  15. Hansma, P., Schitter, G., Fantner, G., Prater, C.: High speed atomic force microscopy. Science 314, 601–602 (2006)

    Article  Google Scholar 

  16. Horowitz, R., Li, Y., Oldham, K., Kon, S., Huang, X.: Dual-stage servo systems and vibration compensation in computer hard disk drives. Control Engin. Prac. 15(3), 291–305 (2007)

    Article  Google Scholar 

  17. Jeong, Y., Jayanth, G., Jhiang, S., Menq, C.: Direct tip-sample interaction force control for the dynamic mode atomic force microscopy. Appl. Phys. Lett. 88, 204102 (2006)

    Google Scholar 

  18. Kodera, N., Sakashita, M., Ando, T.: Dynamic proportional-integral-differential controller for high-speed atomic force microscopy. Rev. Sci. Instrum. 77, 083704 (2006)

    Google Scholar 

  19. Kuiper, S., Fleming, A., Schitter, G.: Dual actuation for high speed atomic force microscopy. In: Proc. IFAC Mechatronics Conf., pp. 441–446 (2010)

    Google Scholar 

  20. Kuiper, S., Schitter, G.: Self-sensing actuation and damping of a piezoelectric tube scanner for atomic force microscopy. In: Proc. Europ. Control. Conf. 2009 (2009)

    Google Scholar 

  21. Kuiper, S., Schitter, G.: Active damping of a piezoelectric tube scanner using self-sensing piezo actuation. Mechatron. 20, 656–665 (2010)

    Article  Google Scholar 

  22. Leang, K., Devasia, S.: Design of hysteresis-compensating iterative learning control for piezo-positioners: Applications to atomic force microscope. Mechantron. 16, 141–158 (2006)

    Article  Google Scholar 

  23. Merry, R., Uyanik, M., van de Molengraft, R., Koops, R., van Veghel, M., Steinbuch, M.: Identification, control and hysteresis compensation of a 3 DOF metrological AFM. Asian J. Control 11, 130–143 (2009)

    Article  Google Scholar 

  24. Moheimani, S., Yong, Y.: Simultaneous sensing and actuation with a piezoelectric tube scanner. Rev. Sci. Instrum. 79, 073702 (2008)

    Google Scholar 

  25. Picco, L., Bozec, L., Ulcinas, A., Engledew, D., Antognozzi, M., Horton, M., Miles, M.: Breaking the speed limit with atomic force microscopy. Nanotechnol. 18, 044, 030 (2007)

    Article  Google Scholar 

  26. Rifai, O., Youcef-Toumi, K.: Coupling in piezoelectric tube scanners used in scanning probe microscope. In: Proc. Amer. Control Conf. (2001)

    Google Scholar 

  27. Rost, M., Crama, L., Schakel, P., Van Tol, E., van Velzen-Williams, G., Overgauw, C., Ter Horst, H., Dekker, H., Okhuijsen, B., Seynen, M., et al.: Scanning probe microscopes go video rate and beyond. Rev. Sci. Instrum. 76, 053710 (2005)

    Google Scholar 

  28. Salapaka, S., Sebastian, A., Cleveland, J., Salapaka, M.: High bandwidth nano-positioner: A robust control approach. Rev. Sci. Instrum. 73, 3232 (2002)

    Article  Google Scholar 

  29. Sarid, D.: Scanning Force Microscopy: With Applications to Electric, Magnetic, and Atomic Forces. Oxford University Press, USA (1994)

    Google Scholar 

  30. Schitter, G.: Improving the speed of AFM by mechatronic design and modern control methods. Technisches Messen. 76(5), 266–273 (2009)

    Article  Google Scholar 

  31. Schitter, G., Astrom, K., DeMartini, B., Thurner, P., Turner, K., Hansma, P.: Design and modeling of a high-speed AFM-scanner. IEEE Trans. Control Syst. Tech. 15(5) (2007)

    Google Scholar 

  32. Schitter, G., Menold, P., Knapp, H., Allgower, F., Stemmer, A.: High performance feedback for fast scanning atomic force microscopes. Rev. Sci. Instrum. 72, 3320 (2001)

    Article  Google Scholar 

  33. Schitter, G., Rijkee, W., Phan, N.: Dual actuation for high-bandwidth nanopositioning. In: Proc. 47th IEEE Conf. Decis. Control 2008, pp. 5176–5181 (2008)

    Google Scholar 

  34. Schitter, G., Stemmer, A.: Identification and open-loop tracking control of a piezoelectric tube scanner for high-speed scanning-probe microscopy. IEEE Trans. Control Syst. Technol. 12, 449–454 (2004)

    Article  Google Scholar 

  35. Schroeck, S., Messner, W.: On controller design for linear time-invariant dual-input single-output systems. In: Proc. Amer. Control Conf. 1999, vol. 6 (1999)

    Google Scholar 

  36. Sebastian, A., Salapaka, S.: Design methodologies for robust nano-positioning. IEEE Trans. Control Syst. Technol. 13(6), 868–876 (2005)

    Article  Google Scholar 

  37. Skogestad, S., Postlethwaite, I.: Multivariable Feedback Control: Analysis and Design. John Wiley & Sons, Chichester (2005)

    Google Scholar 

  38. Slocum, A.: Precision Machine Design. Society of Manufacturing (1992)

    Google Scholar 

  39. Sulchek, T., Minne, S., Adams, J., Fletcher, D., Atalar, A., Quate, C., Adderton, D.: Dual integrated actuators for extended range high speed atomic force microscopy. Appl. Phys. Lett. 75, 1637–1639 (1999)

    Article  Google Scholar 

  40. Tamer, N., Dahleh, M.: Feedback control of piezoelectric tube scanners. In: Proc. 33rd IEEE Conf. Decis. Control 1994, vol. 2 (1994)

    Google Scholar 

  41. Wu, Y., Zou, Q.: An iterative based feedforward-feedback control approach to high-speed AFM imaging. In: Proc. Amer. Control Conf. 2009, pp. 1658–1663. IEEE Press, Los Alamitos (2009)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kuiper, S., Schitter, G. (2011). Improving the Imaging Speed of AFM with Modern Control Techniques. In: Eleftheriou, E., Moheimani, S.O.R. (eds) Control Technologies for Emerging Micro and Nanoscale Systems. Lecture Notes in Control and Information Sciences, vol 413. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22173-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22173-6_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22172-9

  • Online ISBN: 978-3-642-22173-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics