Skip to main content

Lateral Tape Motion and Control Systems Design in Tape Storage

  • Chapter
Control Technologies for Emerging Micro and Nanoscale Systems

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 413))

  • 839 Accesses

Abstract

In tape storage systems, lateral tape motion (LTM) of the flexible moving medium is the main limiting factor for increasing the track density on a magnetic tape. A track-follow control system is used to reduce the misalignment between the medium and the recording head by compensating for the lateral tape vibrations and thereby determine the achievable positioning accuracies. In this chapter, improvements in the track-following capabilities of tape storage systems are discussed. Specifically, the characteristics of LTM, the main disturbance in the tape track-follow system, are described. Also evaluated are control system concepts that improve the track-follow performance either by reducing the LTM or by enhancing the track-follow control system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Eleftheriou, E., et al.: IEEE Trans. Magn. 39(2), 938–945 (2003)

    Article  Google Scholar 

  2. Pantazi, A., et al.: IBM J. Res. Develop. 52(4/5), 493–511 (2008)

    Article  Google Scholar 

  3. Bandic, Z.Z., Victoria, R.H.: Proc. IEEE 96(11), 1749–1753 (2008)

    Article  Google Scholar 

  4. Cherubini, G., et al.: IEEE Trans. Magn. 47(1), 137–147 (2011)

    Article  Google Scholar 

  5. Pantazi, A., et al.: IEEE Trans. Control Syst. Technol. 15(5), 824–841 (2007)

    Article  Google Scholar 

  6. Sebastian, A., Pantazi, A., Pozidis, H., Eleftheriou, E.: IEEE Control Systems Mag. 28(4), 26–35 (2008)

    Article  Google Scholar 

  7. Jianxu, M., Ang Jr., M.H.: Microrobotics and Microassembly II. In: Proc. SPIE, vol. 4194, pp. 94–102 (2000)

    Google Scholar 

  8. Horowitz, R., et al.: In: Bhushan, B. (ed.) Springer Handbook of Nanotechnology, ch. 31, pp. 921–950. Springer, Berlin (2004)

    Google Scholar 

  9. Berman, D., et al.: IEEE Trans. Magn. 43(8), 3502–3508 (2007)

    Article  Google Scholar 

  10. Argumedo, A.J., et al.: IBM J. Res. Develop. 52(4/5), 513–527 (2008)

    Article  Google Scholar 

  11. Standard ECMA-319. Data interchange on 12.7 mm 384-track magnetic tape cartridges - Ultrium-1 format (2001)

    Google Scholar 

  12. Jaquette, G.A.: IBM J. Res. Develop. 47(4), 429–444 (2003)

    Article  Google Scholar 

  13. Barrett, R.C., Klaassen, E.H., Albrecht, T.R., Jaquette, G.A., Eaton, J.H.: IEEE Trans. Magn. 34(4), Part 1, 1872–1877 (1998)

    Article  Google Scholar 

  14. Cherubini, G., Eleftheriou, E., Jelitto, J., Hutchins, R.: In: Proc. ASME Information Storage and Processing Systems Conf., Santa Clara, CA, pp. 160–162 (2007)

    Google Scholar 

  15. Taylor, R.J., Talke, F.E.: Tribology International 38(6-7), 599–605 (2005)

    Article  Google Scholar 

  16. Hansen, W.S., Bhushan, B.: J. Magn. Mater. 293, 826–848 (2005)

    Article  Google Scholar 

  17. Raeymaekers, B., Talke, F.E.: J. Trib. 131(1), 011903 (2009)

    Article  Google Scholar 

  18. Pantazi, A., Jelitto, J., Bui, N., Eleftheriou, E.: In: Proc. 5th IFAC Symposium on Mechatronics Systems, Cambridge, MA, pp. 532–537 (2010)

    Google Scholar 

  19. Pantazi, A., et al.: In: Proc. ASME Information Storage and Processing Systems Conf., Santa Clara, CA, pp. 304–306 (2010)

    Google Scholar 

  20. Shelton, J.J., Reid, K.N.: Trans. ASME, J. Dyn. Syst. Meas. Control, Ser. G (3), 187–192 (1971)

    Article  Google Scholar 

  21. Shelton, J.J., Reid, K.N.: Trans. ASME, J. Dyn. Syst. Meas. Control, Ser. G (3), 180–186 (1971)

    Article  Google Scholar 

  22. Panda, S.P., Engelmann, A.P.: Microsystem Technol. 10, 11–16 (2003)

    Article  Google Scholar 

  23. Kinney, C.E., de Callafon, R.A.: In: Proc. JSME-IIP/ASME-ISPS Conf., Ibaraki, Japan (2009)

    Google Scholar 

  24. Boettcher, U., Raeymaekers, B., de Callafon, R.A., Talke, F.E.: IEEE Trans. Magn. 45(7), 3017–3024 (2009)

    Article  Google Scholar 

  25. Kartik, V., Pantazi, A., Lantz, M.: In: Proc. ASME Information Storage and Processing Systems Conf., Santa Clara, CA, pp. 265–267 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pantazi, A. (2011). Lateral Tape Motion and Control Systems Design in Tape Storage. In: Eleftheriou, E., Moheimani, S.O.R. (eds) Control Technologies for Emerging Micro and Nanoscale Systems. Lecture Notes in Control and Information Sciences, vol 413. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22173-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22173-6_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22172-9

  • Online ISBN: 978-3-642-22173-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics