Skip to main content

Application of the Strain Rate Intensity Factor to Modeling Material Behavior in the Vicinity of Frictional Interfaces

  • Chapter
Trends in Computational Contact Mechanics

Part of the book series: Lecture Notes in Applied and Computational Mechanics ((LNACM,volume 58))

Abstract

This paper concerns with a novel approach to predicting the formation of a narrow layer of intensive plastic deformation in the vicinity of frictional interfaces. Theoretical solutions based on several conventional rigid plastic models are singular near maximum friction surfaces. In particular, the equivalent strain rate approaches infinity near such surfaces. This is in qualitative agreement with experimental observations that material properties in the vicinity of frictional interfaces are often quite different from the properties in the bulk. The new theory relates the strain rate intensity factor, which is the coefficient of the main singular term in a series expansion of the equivalent strain rate in the vicinity of maximum friction surfaces, and the thickness of the layer of intensive plastic deformation. Moreover, new constitutive equations involving the strain rate intensity factor are proposed for some parameters which characterize the structure of material. The process of plane strain extrusion is considered in some detail as an illustrative example. The strain rate intensity factor is determined from an approximate solution. Using this solution and experimental data the thickness of the layer of intensive plastic deformation is found. A non-local ductile fracture criterion is adopted to predict the initiation of ductile fracture in the layer. A numerical method for determining the strain rate intensity factor in the case of plane strain flow of rigid perfectly plastic material is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexandrov, S.: Interrelation between constitutive laws and fracture criteria in the vicinity of friction surfaces. In: Bouchaud, E., Jeulin, D., Prioul, C., Roux, S. (eds.) Physical Aspects of Fracture. Kluwer, Dordrecht (2001)

    Google Scholar 

  2. Alexandrov, S.: Comparison of double-shearing and coaxial models of pressure-dependent plastic flow at frictional boundaries. Trans. ASME J. Appl. Mech. 70, 212–219 (2003)

    Article  MATH  Google Scholar 

  3. Alexandrov, S.: Singular solutions in an axisymmetric flow of a medium obeying the double shear model. J. Appl. Mech. Techn. Physics 46, 766–771 (2005)

    Google Scholar 

  4. Alexandrov, S.: Steady penetration of a rigid cone into pressure-dependent plastic material. Int. J. Solids Struct. 43, 193–205 (2006)

    Article  MATH  Google Scholar 

  5. Alexandrov, S.E., Baranova, I.D., Mishuris, G.: Compression of a viscoplastic layer between rough parallel plates. Mech. Solids 43, 863–869 (2008)

    Article  Google Scholar 

  6. Alexandrov, S., Grabco, D., Lyamina, E., Shikimaka, O.: An approach to prediction of evolution of material properties in the vicinity of frictional interfaces in metal forming. Key Engng. Mater. 345/346, 741–744 (2007)

    Article  Google Scholar 

  7. Alexandrov, S., Grabko, D., Shikimaka, O.: The determination of the thickness of a layer of intensive deformations in the vicinity of the friction surface in metal forming processes. J. Mach. Manuf. Reliab. 38, 277–282 (2009)

    Article  Google Scholar 

  8. Alexandrov, S., Harris, D.: Comparison of solution behaviour for three models of pressure-dependent plasticity: A simple analytical example. Int. J. Mech. Sci. 48, 750–762 (2006)

    Article  MATH  Google Scholar 

  9. Alexandrov, S., Lyamina, E.: Singular solutions for plane plastic flow of pressure-dependent materials. Dokl. Phys. 47, 308–311 (2002)

    Article  MathSciNet  Google Scholar 

  10. Alexandrov, S., Lyamina, E.: Compression of a mean-stress sensitive plastic material by rotating plates. Mech. Solids 38, 40–48 (2003)

    Google Scholar 

  11. Alexandrov, S., Lyamina, E.: Plane-strain compression of material obeying the double-shearing model between rotating plates. Int. J. Mech. Sci. 45, 1505–1517 (2003)

    Article  MATH  Google Scholar 

  12. Alexandrov, S., Lyamina, E.: Application of a non-local criterion to fracture prediction in plane-strain drawing. J. Technol. Plasticity 30, 53–59 (2005)

    Google Scholar 

  13. Alexandrov, S., Lyamina, E.: Qualitative distinctions in the solutions based on the plasticity theories with Mohr–Coulomb yield criterion. J. Appl. Mech. Techn. Phys. 46, 883–890 (2005)

    Article  Google Scholar 

  14. Alexandrov, S., Lyamina, E.: Flow of pressure-dependent plastic material between two rough conical walls. Acta Mech. 187, 37–53 (2006)

    Article  MATH  Google Scholar 

  15. Alexandrov, S., Lyamina, E.: Prediction of fracture in the vicinity of friction surfaces in metal forming processes. J. Appl. Mech. Techn. Phys. 47, 757–761 (2006)

    Article  Google Scholar 

  16. Alexandrov, S., Lyamina, E.: A Nonlocal criterion of fracture near a friction surface and its application to analysis of drawing and extrusion processes. J. Mach. Manufact. Reliabil. 36, 262–267 (2007)

    Article  Google Scholar 

  17. Alexandrov, S., Mishuris, G.: Viscoplasticity with a saturation stress: distinguished features of the model. Arch. Appl. Mech. 77, 35–47 (2007)

    Article  MATH  Google Scholar 

  18. Alexandrov, S., Mishuris, G.: Qualitative behaviour of viscoplastic solutions in the vicinity of maximum-friction surfaces. J. Engng. Math. 65, 143–156 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  19. Alexandrov, S., Richmond, O.: Asymptotic behavior of the velocity field in the case of axially symmetric flow of a material obeying the Treska condition. Dokl. Phys. 43, 362–364 (1998)

    MathSciNet  Google Scholar 

  20. Alexandrov, S., Richmond, O.: Singular plastic flow fields near surfaces of maximum friction stress. Int. J. Non-Linear Mech. 36, 1–11 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  21. Appleby, E.J., Devenpeck, M.K., Lu, C.Y., Rao, R.S., Richmond, O., Wright, P.K.: Strip drawing: A theoretical-experimental comparison. Int. J. Mech. Sci. 26, 351–362 (1984)

    Article  Google Scholar 

  22. Atkins, A.G.: Fracture in forming. J. Mater. Process. Technol. 56, 609–618 (1996)

    Article  Google Scholar 

  23. Aukrust, T., LaZghab, S.: Thin shear boundary layers in flow of hot aluminium. Int. J. Plast. 16, 59–71 (2000)

    Article  Google Scholar 

  24. Chandrasekar, S., Farris, T.N., Kompella, S., Moylan, S.P.: A new approach for studying mechanical properties of thin surface layers affected by manufacturing processes. Trans. ASME J. Manuf. Sci. Engng. 125, 310–315 (2003)

    Article  Google Scholar 

  25. Collins, I.F., Meguid, S.A.: On the influence of hardening and anisotropy on the plane-strain compression of thin metal strip. Trans. ASME J. Appl. Mech. 44, 271–278 (1977)

    Article  MATH  Google Scholar 

  26. Dean, T.A., Lin, J.: Modelling of microstructure evolution in hot forming using unified constitutive equations. J. Mater. Process. Technol. 167, 354–362 (2005)

    Article  Google Scholar 

  27. Druyanov, B.A., Nepershin, R.I.: Problems of Technological Plasticity. Elsevier, Amsterdam (1994)

    Google Scholar 

  28. Duan, X., Sheppard, T.: Simulation of substructural strengthening in hot flat rolling. J. Mater. Process. Technol. 125/126, 179–187 (2002)

    Article  Google Scholar 

  29. Dutton, R.E., Goetz, R.L., Shamasundar, S., Semiatin, S.L.: The ring test for P/M materials. Trans. ASME J. Manuf. Sci. Engng. 120, 764–769 (1998)

    Article  Google Scholar 

  30. El-Domiaty, A.A., Kandil, M.A., Shabara, M.A.: Validity assessment of ductile fracture criteria in cold forming. J. Mater. Engng. Perform. 5, 478–488 (1996)

    Article  Google Scholar 

  31. Grekova, E.F., Harris, D.: A hyperbolic well-posed model for the flow of granular materials. J. Engng. Math. 52, 107–135 (2005)

    MATH  MathSciNet  Google Scholar 

  32. Graggs, J.W.: Characteristic surfaces in ideal plasticity in three dimensions. Quart. J. Mech. Appl. Math. 7, 35–39 (1954)

    Article  MathSciNet  Google Scholar 

  33. Hill, R.: The Mathematical Theory of Plasticity. Clarendon Press, Oxford (1950)

    MATH  Google Scholar 

  34. Kanninen, M.F., Popelar, C.H.: Advanced Fracture Mechanics. Oxford University Press, New York (1985)

    MATH  Google Scholar 

  35. Kao, A.S., Kuhn, H.A., Richmond, O., Spitzig, W.A.: Influence of superimposed hydrostatic pressure on bending fracture and formability of a low carbon steel containing globular sulfides. Trans. ASME J. Engng. Mater. Technol. 112, 26–30 (1990)

    Article  Google Scholar 

  36. Kokovkhin, E.A., Trunina, T.A.: Formation of a finely dispersed structure in steel surface layers under combined processing using hydraulic pressing. J. Mach. Manuf. Reliab. 37, 160–162 (2008)

    Article  Google Scholar 

  37. Lyamina, E.A.: Application of the method of characteristics to finding the strain rate intensity factor. In: Onate, E., Owen, R., Suarez, B. (eds.) Computational Plasticity Fundamentals and Applications. CIMNE, Barcelona (2007)

    Google Scholar 

  38. Marshall, E.A.: The compression of a slab of ideal soil between rough plates. Acta Mech. 3, 82–92 (1967)

    Article  Google Scholar 

  39. Meguid, S.A.: Engineering Fracture Mechanics. Elsevier Applied Science, London (1989)

    Google Scholar 

  40. Moran, B., Norris, D.M., Quinones, D.F., Reaugh, J.E.: A plastic-strain, mean-stress criterion for ductile fracture. Trans. ASME J. Engng. Mater. Technol. 100, 279–286 (1978)

    Article  Google Scholar 

  41. Pemberton, C.S.: Flow of imponderable granular materials in wedge-shaped channels. J. Mech. Phys. Solids 13, 351–360 (1965)

    Article  Google Scholar 

  42. Richmond, O., Spitzig, W.A., Sober, R.J.: The effect of hydrostatic pressure on the deformation behavior of maraging and HY-80 steels and its implications for plasticity theory. Metall. Trans. 7A, 1703–1710 (1976)

    Google Scholar 

  43. Shabaik, A., Vujovic, V.: Workability criteria for ductile fracture. Trans. ASME J. Engng. Mater. Technol. 108, 245–249 (1986)

    Article  Google Scholar 

  44. Shield, R.T.: Plastic flow in a converging conical channel. J. Mech. Phys. Solids 3, 246–258 (1955)

    Article  MathSciNet  Google Scholar 

  45. Spencer, A.J.M.: A theory of the kinematics of ideal soils under plane strain conditions. J. Mech. Phys. Solids 12, 337–351 (1964)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lyamina, E., Alexandrov, S. (2011). Application of the Strain Rate Intensity Factor to Modeling Material Behavior in the Vicinity of Frictional Interfaces. In: Zavarise, G., Wriggers, P. (eds) Trends in Computational Contact Mechanics. Lecture Notes in Applied and Computational Mechanics, vol 58. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22167-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22167-5_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22166-8

  • Online ISBN: 978-3-642-22167-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics