Skip to main content

Coupled Friction and Roughness Surface Effects in Shallow Spherical Nanoindentation

  • Chapter
Book cover Trends in Computational Contact Mechanics

Part of the book series: Lecture Notes in Applied and Computational Mechanics ((LNACM,volume 58))

Abstract

When nanoindentation is used for thin film characterization, usually shallow indents are made to avoid the spurious effect of the substrate. However, surface effects stemming from surface roughness and friction can become important in shallow indentation depths, potentially resulting in the variation of nanoindentation results. A numerical study is conducted aiming for a more complete understanding of the coupled influence of friction and sample surface roughness in nanoindentation of pure nickel, using a slip rate dependent friction law. Two experimentally used post-treatment methods are applied to obtain the elastic properties from the raw numerical data. Results confirm the strong interaction between these two contributions of surface effects, and their cumulative effect leads to significant variations in both the indenter load vs. displacement curves and the evaluated elastic modulus. The resulting dispersion is somewhat higher than the one computed for a slip rate independent Coulomb friction. The velocity-weakening nature of the used friction law, is observed to induce a stick-slip behavior which has a manifestation similar to pop-ins in the load-displacement curves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Achanta, S., Liskiewicz, T., Drees, D., Celis, J.-P.: Friction mechanisms at the micro-scale. Tribol. Int. 42, 1792–1799 (2009)

    Article  Google Scholar 

  2. Antunes, J.M., Menezes, L.F., Fernandes, J.V.: Three-dimensional numerical simulation of Vickers indentation tests. Int. J. Solid Struct. 43, 784–806 (2006)

    Article  MATH  Google Scholar 

  3. Abu Al-Rub, R.K.: Prediction of micro and nanoindentation size effect from conical and pyramidal indentation. Mech. Mater. 39, 787–802 (2007)

    Article  Google Scholar 

  4. Baker, S.P.: Between nanoindentation and scanning force microscopy: measuring mechanical properties in the nanometer regime. Thin Solid Films 308-309, 289–296 (1997)

    Article  Google Scholar 

  5. Bobji, M.S., Biswas, S.K.: Hardness of a surface containing uniformly spaced pyramidal asperities. Tribol. Lett. 7, 51–56 (1999)

    Article  Google Scholar 

  6. Ben-Dor, G., Dubinsky, A., Elperin, T.: Localized interaction models with non-constant friction for rigid penetrating impactors. Int. J. Solid Struct. 44, 2593–2607 (2007)

    Article  MATH  Google Scholar 

  7. Bellemare, S., Dao, M., Suresh, S.: The frictional sliding response of elasto-plastic materials in contact with a conical indenter. Int. J. Solid Struct. 44, 1970–1989 (2007)

    Article  MATH  Google Scholar 

  8. Bellemare, S., Dao, M., Suresh, S.: Effects of mechanical properties and surface friction on elasto-plastic sliding contact. Mech. Mater. 40, 206–219 (2008)

    Article  Google Scholar 

  9. Berke, P., El Houdaigui, F., Massart, T.J.: Coupled friction and roughness surface effects in shallow spherical nanoindentation. Wear 268, 223–232 (2010)

    Article  Google Scholar 

  10. Bora, C.K., Flater, E.E., Street, M.D., Redmond, J.M., Starr, M.J., Carpick, R.W., Plesha, M.E.: Multiscale roughness and modeling of MEMS interfaces. Tribol. Lett. 19, 37–48 (2005)

    Article  Google Scholar 

  11. Blau, P.J.: The significance and use of the friction coefficient. Tribol. Int. 34, 585–591 (2001)

    Article  Google Scholar 

  12. Bolzon, G., Maier, G., Panico, M.: Material model calibration by indentation, imprint mapping and inverse analysis. Int. J. Solid Struct. 41, 2957–2975 (2004)

    Article  MATH  Google Scholar 

  13. Bobji, M.S., Shivakumar, K., Alehossein, H., Venkateshwarlu, V., Biswas, S.K.: Influence of surface roughness on the scatter in hardness measurements – a numerical study. Int. J. Rock Mech. Min. 36, 399–404 (1999)

    Article  Google Scholar 

  14. Bucaille, J.L., Stauss, S., Felder, E., Michler, J.: Determination of plastic properties of metals by instrumented indentation using different sharp indenters. Acta Mater. 51, 1663–1678 (2003)

    Article  Google Scholar 

  15. Berke, P., Tam, E., Delplancke-Ogletree, M.-P., Massart, T.J.: Study of the rate-dependent behavior of pure nickel in conical nanoindentation through numerical simulation coupled to experiments. Mech. Mater. 41, 154–164 (2009)

    Article  Google Scholar 

  16. Bressan, J.D., Tramontin, A., Rosa, C.: Modeling of nanoindentation of bulk and thin film by finite element method. Wear 258, 115–122 (2005)

    Article  Google Scholar 

  17. Carpick, R.W., Agraït, N., Ogletree, D.F., Salmeron, M.: Measurement of interfacial shear (friction) with an ultrahigh vacuum atomic force microscope. J. Vac. Sci. Technol. B 14, 1289–1295 (1996)

    Article  Google Scholar 

  18. Carpick, R.W., Agraït, N., Ogletree, D.F., Salmeron, M.: Variation of the interfacial shear strength and adhesion of a nanometer-sized contact. Langmuir 12, 3334–3340 (1996)

    Article  Google Scholar 

  19. Cai, X., Bangert, H.: Hardness measurements of thin films – Determining the critical ratio of depth to thickness using fem. Thin Solid Films 264, 59–71 (1995)

    Article  Google Scholar 

  20. Carlsson, S., Biwa, S., Larsson, P.-L.: On friction effects at inelastic contact between spherical bodies. Int. J. Mech. Sci. 42, 107–128 (2000)

    Article  MATH  Google Scholar 

  21. Cheng, Y.-T., Cheng, C.-M.: Scaling, dimensional analysis, and indentation measurements. Mater. Sci. Eng. R 44, 91–149 (2004)

    Article  Google Scholar 

  22. Cao, Y.P., Lu, J.: A new method to extract the plastic properties of metal materials from an instrumented spherical indentation loading curve. Acta Mater. 52, 4023–4032 (2004)

    Article  Google Scholar 

  23. Chudoba, T., Richter, F.: Investigation of creep behaviour under load during indentation experiments and its influence on hardness and modulus results. Surf. Coat. Tech. 148, 191–198 (2001)

    Article  Google Scholar 

  24. de Souza, G.B., Foerster, C.E., da Silva, S.L.R., Lepienski, C.M.: Nanomechanical properties of rough surfaces. J. Mater. Res. 9, 159–163 (2006)

    Google Scholar 

  25. Fischer-Cripps, A.C.: Critical review of analysis and interpretation of nanoindentation test data. Surf. Coat. Tech. 200, 4153–4165 (2006)

    Article  Google Scholar 

  26. Fang, T.-H., Chang, W.-J., Lin, C.-M.: Nanoindentation characterization of ZnO thin films. Mater. Sci. Eng. A, 452–453:715–720 (2007)

    Google Scholar 

  27. Fujikane, M., Leszcznski, M., Nagao, S., Nakayama, T., Yamanaka, S., Niihara, K., Nowak, R.: Elastic-plastic transition during nanoindentation in bulk GaN crystal. J. Alloy. Compd. 450, 5–411 (2008)

    Article  Google Scholar 

  28. Fortt, A.L., Schulson, E.M.: Velocity-dependent friction on Coulombic shear faults in ice. Acta Mater. 57, 4382–4390 (2009)

    Article  Google Scholar 

  29. Gao, Y.X., Fan, H.: A micro-mechanism based analysis for size-dependent indentation hardness. J. Mater. Sci. 37, 4493–4498 (2002)

    Article  Google Scholar 

  30. Gouldstone, A., Chollacoop, N., Dao, M., Li, J., Minor, A.M., Shen, Y.-L.: Indentation across size scales and disciplines: Recent developments in experimentation and modeling. Acta Mater. 55, 4015–4039 (2007)

    Article  Google Scholar 

  31. Habbab, H., Mellor, B.G., Syngellakis, S.: Post-yield characterisation of metals with significant pile-up through spherical indentations. Acta Mater. 54, 1965–1973 (2006)

    Article  Google Scholar 

  32. Hainsworth, S.V., Soh, W.C.: The effect of the substrate on the mechanical properties of TiN coatings. Surf. Coat. Tech. 163/164, 515–520 (2003)

    Article  Google Scholar 

  33. Jeong, S.-M., Lee, H.-L.: Finite element analysis of the tip deformation effect on nanoindentation hardness. Thin Solid Films 492, 173–179 (2005)

    Article  Google Scholar 

  34. Nanda Kumar, A.K., Kannan, M.D., Jayakumar, S., Rajam, K.S., Raju, V.S.: Investigations on the mechanical behaviour of rough surfaces of TiNi thin films by nanoindentation studies. Surf. Coat. Tech. 201, 3253–3259 (2006)

    Article  Google Scholar 

  35. Kim, J.-Y., Kang, S.-K., Lee, J.-J., Jang, J., Lee, Y.-H., Kwon, D.: Influence of surface-roughness on indentation size effect. Acta Mater. 55, 3555–3562 (2007)

    Article  Google Scholar 

  36. Kim, J.-Y., Lee, B.-W., Read, D.T., Kwon, D.: Influence of tip bluntness on the size-dependent nanoindentation hardness. Scripta Mater. 52, 353–358 (2005)

    Article  Google Scholar 

  37. Lu, C.-J., Bogy, D.B.: The effect of tip radius on nano-indentation hardness tests. Int. J. Solid Struct. 32, 1759–1770 (1995)

    Article  MATH  Google Scholar 

  38. Li, J., Beres, W.: Scratch test for coatings/substrate systems – A literature review. Can. Metall. Quart. 46, 155–174 (2007)

    Google Scholar 

  39. Lafaye, S., Gauthier, C., Schirrer, R.: A surface flow line model of a scratching tip: Apparent and true local friction coefficients. Tribol. Int. 38, 113–127 (2005)

    Article  Google Scholar 

  40. Lafaye, S., Gauthier, C., Schirrer, R.: Analyzing friction and scratch tests without in situ observation. Wear 265, 664–673 (2008)

    Article  Google Scholar 

  41. Mata, M., Alcalà, J.: The role of friction on sharp indentation. J. Mech. Phys. Solids 52, 145–165 (2004)

    Article  MATH  Google Scholar 

  42. Mesarovic, S.D., Fleck, N.A.: Spherical indentation of elastic-plastic solids. Proc. Royal Soc. Lond. A-CONTA 455, 2707–2738 (1999)

    Article  MATH  Google Scholar 

  43. Ma, D., Ong, C.W., Lu, J., He, J.: Methodology for the evaluation of yield strength and hardening behavior of metallic materials by indentation with spherical tip. J. Appl. Phys. 94, 288–294 (2003)

    Article  Google Scholar 

  44. Martins, J.A.C., Oden, J.T., Simões, F.M.F.: A study of static and kinetic friction. Int. J. Eng. Sci. 28, 29–92 (1990)

    Article  MATH  Google Scholar 

  45. Nosonovsky, M., Bhushan, B.: Multiscale friction mechanisms and hierarchical surfaces in nano- and bio-tribology. Mater. Sci. Eng. Rep. 58, 162–193 (2007)

    Article  Google Scholar 

  46. Ni, W., Cheng, Y.-T., Cheng, C.-M., Grummon, D.S.: An energy-based method for analyzing instrumented spherical indentation experiments. J. Mater. Res. 19, 149–157 (2004)

    Article  Google Scholar 

  47. Oliver, W.C., Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation measurements. J. Mater. Res. 7, 1564–1583 (1992)

    Article  Google Scholar 

  48. Pelletier, C.G.N., Dekkers, E.C.A., Govaert, L.E., den Toonder, J.M.J., Meijer, H.E.H.: The influence of indenter-surface misalignment on the results of instrumented indentation tests. Polym. Test. 26, 949–959 (2007)

    Article  Google Scholar 

  49. Persson, B.N.J.: Contact mechanics for randomly rough surfaces. Surf. Sci. Rep. 61, 201–227 (2006)

    Article  MathSciNet  Google Scholar 

  50. Qasmi, M., Delobelle, P.: Influence of the average roughness r ms on the precision of the Young’s modulus and hardness determination using nanoindentation technique with a Berkovich indenter. Surf. Coat. Tech. 201, 1191–1199 (2006)

    Article  Google Scholar 

  51. Qin, J., Huang, Y., Hwang, K.C., Song, J., Pharr, G.M.: The effect of indenter angle on the microindentation hardness. Acta Mater. 55, 6127–6132 (2007)

    Article  Google Scholar 

  52. Samtech. Samcef V13.1, Samtech, Liège, Belgium, http://www.samtech.com

  53. Szlufarska, I.: Atomistic simulations of nanoindentation, Mater. Mater. Today 9, 42–50 (2006)

    Article  Google Scholar 

  54. Tsou, C., Hsu, C., Fang, W.: Interfaces friction effect of sliding contact on nanoindentation test. Sensor Actuator A 117, 309–316 (2005)

    Article  Google Scholar 

  55. Tao, Q., Lee, H.P., Lim, S.P.: Contact mechanics of surfaces with various models of roughness descriptions. Wear 249, 539–545 (2001)

    Article  Google Scholar 

  56. Taljat, B., Pharr, G.M.: Development of pile-up during spherical indentation of elastic-plastic solids. Int. J. Solid Struct. 41, 3891–3904 (2004)

    Article  MATH  Google Scholar 

  57. Tho, K.K., Swaddiwudhipong, S., Hua, J., Liu, Z.S.: Numerical simulation of indentation with size effect. Mater. Sci. Eng. A 421, 268–275 (2006)

    Article  Google Scholar 

  58. Walter, C., Antretter, T., Daniel, R., Mitterer, C.: Finite element simulation of the effect of surface roughness on nanoindentation of thin films with spherical indenters. Surf. Coat. Tech. 202, 1103–1107 (2007)

    Article  Google Scholar 

  59. Walter, C., Mitterer, C.: 3D versus 2D finite element simulation of the effect of surface roughness on nanoindentation of hard coatings. Surf. Coat. Tech. 203, 3286–3290 (2009)

    Article  Google Scholar 

  60. Wang, T.H., Fang, T.-H., Lin, Y.-C.: A numerical study of factors affecting the characterization of nanoindentation on silicon. Mater. Sci. Eng. A 447, 244–253 (2007)

    Article  Google Scholar 

  61. Yu, N., Polycarpoua, A.A., Conry, T.F.: Tip-radius effect in finite element modeling of sub-50 nm shallow nanoindentation. Thin Solid Films 450, 295–303 (2004)

    Article  Google Scholar 

  62. Warren, A.W., Guo, Y.B.: Machined surface properties determined by nanoindentation: Experimental and FEA studies on the effects of surface integrity and tip geometry. Surf. Coat. Tech. 201, 423–433 (2006)

    Article  Google Scholar 

  63. Zhao, M., Ogasawara, N., Chiba, N., Chen, X.: A new approach to measure the elastic-plastic properties of bulk materials using spherical indentation. Acta Mater. 54, 23–32 (2006)

    Article  Google Scholar 

  64. Zong, Z., Soboyejo, W.: Indentation size effects in face centered cubic single crystal films. Mater. Sci. Eng. A 404, 281–290 (2004)

    Google Scholar 

  65. Zhao, M., Slaughter, W.S., Li, M., Mao, S.X.: Material-length-scale-controlled nanoindentation size effects due to strain-gradient plasticity. Acta Mater. 51, 4461–4469 (2003)

    Article  Google Scholar 

  66. Zhang, T.-Y., Xu, W.-H., Zhao, M.-H.: The role of plastic deformation on rough surfaces in the size-dependent hardness. Acta Mater. 52, 57–68 (2004)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Berke, P., Massart, T.J. (2011). Coupled Friction and Roughness Surface Effects in Shallow Spherical Nanoindentation. In: Zavarise, G., Wriggers, P. (eds) Trends in Computational Contact Mechanics. Lecture Notes in Applied and Computational Mechanics, vol 58. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22167-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22167-5_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22166-8

  • Online ISBN: 978-3-642-22167-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics