Skip to main content

Mineralogy, Geochemistry and Cathodoluminescence of Authigenic Quartz from Different Sedimentary Rocks

  • Chapter
Quartz: Deposits, Mineralogy and Analytics

Part of the book series: Springer Geology ((SPRINGERGEOL))

Abstract

Authigenic quartz is present in different sedimentary rocks of North-Eastern Germany. Single crystals of euhedral quartz were detected in the Permian (Zechstein) salt deposit of Roßleben, in quartz nodules within Triassic sandstone layers (Chirotherien sandstone, Bunter) from Jena, and Tertiary lignite deposits in the Leipzig region (Zwenkau, Cospuden). Mineralogical and geochemical investigations revealed that the authigenic quartz crystals from the different geological units differ in morphology (habit), characteristic inclusions, trace-element geochemistry and cathodoluminescence properties. Accordingly, the results allow not only to clearly distinguish between authigenic and detrital quartz, but also between authigenic quartz from different sedimentary environments. Authigenic quartz from Zechstein salt deposits shows characteristic euhedral forms dominated by rhombohedral faces or a combination of rhombohedral and prism faces, and mineral inclusions (halite or anhydrite) in dependence on the saliniferous facies. The crystals exhibit a blue luminescence, which can be related to a broad emission band at 450 nm. The authigenic quartz crystals from the Bunter sandstone are often intergrown, forming aggregates of several mm up to cm in size. At least three growth zones can be distinguished: spherulithic growth starting from calcite inclusions, quartz with complex internal CL structure, and a homogeneous outer zone with no visible luminescence. The second zone exhibits a cathodoluminescence pattern similar to that of agate with three emission bands at 650, 580 and 450 nm. Authigenic quartz from Tertiary lignites is characterized by doubly terminated crystals with prism and rhombohedral faces. Intergrowth of two or more crystals was observed. The CL is dominated by a transient emission band at 650 nm, which increases in intensity during electron irradiation. The crustal signature of all quartz REE distribution patterns and high contents of Al and Fe indicate the origin of the silica-bearing fluids from weathering solutions and do not show any influence of hydrothermal fluids. On the other hand, elevated concentrations of Na, K, Mg, Ca, and B can probably be related to the influence of saliniferous fluids during quartz precipitation. Although the specific physico-chemical conditions may have been different for the various occurrences, the data suggest a formation of the authigenic quartz crystals during early diagenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bahlburg H, Floyd PA (1999) Advanced techniques in provenance analysis of sedimentary rocks. Sedimentary Geology, vol 124. Elsevier, Amsterdam

    Google Scholar 

  • Baker G (1946) Microscopic quartz crystals in brown coal, Victoria. Am Mineral 31:22–30

    Google Scholar 

  • Bellmann HJ (1986) Zur Genese der verkieselten Hölzer und Braunkohlenquarzite im Raum Leipzig. Zeitschrift geologische Wissenschaften 13:699–704

    Google Scholar 

  • Bennett P (1991) Quartz dissolution in organic-rich aqueous systems. Geochim Cosm Acta 55:1781–1797

    Google Scholar 

  • Bennett P, Siegel DI (1987) Increased solubility of quartz in water due to complexing by organic compounds. Nat 326:684–686

    Google Scholar 

  • Bernet M, Bassett K (2005) Provenance analysis by single-quartz-grain SEM-CL/optical microscopy. J Sed Res 75:492–500

    Google Scholar 

  • Bjørlykke K, Egeberg PK (1993) Quartz cementation in sedimentary basins. Am Assoc Petrol Geol Bull 77:1538–1548

    Google Scholar 

  • Black WW (1949) An occurrence of authigenic feldspar and quartz in Yoredale limestones. Geol Mag 86:129

    Google Scholar 

  • Boogs S Jr, Kwon Y-I, Goles GG, Rusk BG, Krinsley D, Seyedolali A (2002) Is quartz cathodoluminescence a reliable provenance tool? A quantitative examination. J Sed Res 72:408–415

    Google Scholar 

  • Botz RW, Hunt JW, Smith JW (1986) Isotope geochemistry of minerals in Australian bituminous coal. J Sed Petrol 56:99–111

    Google Scholar 

  • Burley SD, Mullis J, Matter A (1989) Timing diagenesis in the Tartan Reservoir (UK North Sea): constraints from combined cathodoluminescence microscopy and fluid inclusion studies. Marine Petrol Geol 6:98–120

    Google Scholar 

  • Chavetz HS, Zhang J (1998) Authigenic euhedral megaquartz crystals in a Quaternary dolomite. J Sediment Res 68:994–1000

    Google Scholar 

  • Dixon JB, Weed SB (1989) Minerals in soil environments. Soil Science Society of America, Madison

    Google Scholar 

  • Evans MA, Elmore RD (2006) Fluid control of localized mineral domains in limestone pressure solution structures. J Struct Geol 28:284–301

    Google Scholar 

  • Evans J, Hogg AJC, Hopkins MS, Howarth RJ (1994) Quantification of quartz cements using combined SEM, CL, and image analysis. J Sediment Petrol A64:334–338

    Google Scholar 

  • Fabricius J (1987) Natural Na-K-Mg-Cl solutions and solid derivatives trapped in euhedral quartz from Danish Zechstein salt. Chem Geol 61:95–112

    Google Scholar 

  • Fitting H-J, Barfels T, Trukhin AN, Schmidt B (2001) Cathodoluminescence of crystalline and amorphous SiO2 and GeO2. J Non-Cryst Solids 279:51–59

    Google Scholar 

  • Friedman GM, Shukla V (1980) Significance of authigenic quartz euhedra after sulphates; example from the Lockport formation (Middle Silurian) from New York. J Sediment Res 50:1299–1304

    Google Scholar 

  • Fruth M, Blankenburg H-J (1992) Charakterisierung von authigenen idiomorphen Kohle- und Salinarquarzen durch Einschlussuntersuchungen. Neues Jahrbuch Mineralogie, Abhandlungen 165:53–64

    Google Scholar 

  • Füchtbauer H (1961) Zur Quarzneubildung in Erdöllagerstätten. Erdöl und Kohle 14:169–173

    Google Scholar 

  • Götze J (1998) Geochemistry and provenance of the Altendorf feldspathic sandstone in the Middle Bunter of the Thuringian basin (Germany). Chem Geol 150:43–61

    Google Scholar 

  • Götze J, Zimmerle W (2000) Quartz and silica as guide to provenance in sediments and sedimentary rocks. Contributions to Sedimentary Geology, vol 21E. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, p 91

    Google Scholar 

  • Götze J, Plötze M, Fuchs H, Habermann D (1999) Defect structure and luminescence behavior of agate-results of electron paramagnetic resonance (EPR) and cathodoluminescence (CL) studies. Mineral Mag 63:149–163

    Google Scholar 

  • Götze J, Plötze M, Habermann D (2001a) Origin, spectral characteristics and practical applications of the cathodoluminescence (CL) of quartz: a review. Miner Petrol 71:225–250

    Google Scholar 

  • Götze J, Tichomirowa M, Fuchs H, Pilot J, Sharp Z (2001b) Geochemistry of agates: a trace element and stable isotope study. Chem Geol 175:523–541

    Google Scholar 

  • Götze J, Plötze M, Graupner T, Hallbauer DK, Bray C (2004) Trace element incorporation into quartz: a combined study by ICP-MS, electron spin resonance, cathodoluminescence, capillary ion analysis and gas chromatography. Geochim Cosmochim Acta 68:3741–3759

    Google Scholar 

  • Grimm W-D (1962) Idiomorphe Quarze als Leitmineralien für salinare Fazies. Erdöl und Kohle 15:880–887

    Google Scholar 

  • Hartmann BH, Juhász-Bodnár K, Ramseyer K, Matter A (2000) Polyphased quartz cementation and its sources: a case study from the Upper Paleocoic Haishi Group sandstones; Sultanate of Oman. IAS Special Publications 29:253–270

    Google Scholar 

  • Heynke A, Zänker G (1970) Zur Ausbildung und Leitbankgliederung des Staßfurtsteinsalzes im Südharz-Kalirevier. Zeitschrift angewandte Geologie 16:344–356

    Google Scholar 

  • Hiatt EE, Kyser TK, Fayek M, Polito P, Holk GJ, Riciputi LR (2007) Early quartz cements and evolution of paleohydraulic properties of basal sandstones in three Paleoproterocoic continental basins: evidence from in situ δ18O analysis of quartz cements. Chem Geol 238:19–37

    Google Scholar 

  • Hoehne K (1954) Zur Neubildung von Quarz in Kohlenflözen. Neues Jahrbuch Geologie Paläonthologie, Abhandlungen 99:209–220

    Google Scholar 

  • Houseknecht DW (1991) Use of cathodoluminescence petrography for understanding compaction, quartz cementation, and porosity in sandstones. In: Baker CE, Kopp OC (eds.) Luminescence microscopy: quantitative and qualitative aspects. SEPM, Dallas, pp 59–66

    Google Scholar 

  • Kelly JL, Fu B, Kita NT, Valley JW (2007) Optically continuous silcrete quartz cements of the St. Peter sanstone: high precision oxygen isotope analysis by ion microprobe. Geochim Cosmochim Acta 71:3812–3832

    Google Scholar 

  • Langbein R (1974) Zur Petrologie der Karneole des thüringischen Chirotherien Sandsteins (Solling-Folge). Chemie der Erde 33:301–325

    Google Scholar 

  • Leskevich LE (1959) Quartz crystals in coal (in Russian). Doklady Akademii Nauk SSSR 124(3):575–577

    Google Scholar 

  • Liu X, Wang S, Zhang F (2004) Fission track dating of authigenic quartz in red weathering crusts of carbonate rocks in Guizhou province (Chinese with English Abstract). Acta Geol Sinica 78:1136–1142

    Google Scholar 

  • Lyon IC, Burley SD, McKeever PJ, Saxton PJ, Macaulay JM (2000) Oxygen isotope analysis of authigenic quartz in sandstones: a comparison of ion microprobe and conventional analytical techniques. In: Worden RH, Morad S (eds.) Quartz cementation in sandstones. Blackwell Science, Oxford, pp 299–316

    Google Scholar 

  • Maliva RG (1987) Quartz geodes: Early diagenetic silicified anhydrite nodules related to dolomitization. J Sediment Res 57:1054–1059

    Google Scholar 

  • Markowitz A, Milliken KL (2003) Quantification of brittle deformation in burial compaction, Frio and Mount Simon formation sandstones. J Sediment Res 73:1007–1021

    Google Scholar 

  • Mason B (1979) Cosmochemistry, Part I. Meteorites. In: Fleischer M (ed) Data of geochemistry, U.S. Geological Survey professional papers, 440-B1, 132 p

    Google Scholar 

  • McBride EF (1989) Quartz cement in sandstones: a review. Earth Sci Rev 26:69–112

    Google Scholar 

  • Milliken KL (1979) The silicified evaporate syndrome—two aspects of silicification history of former evaporate nodules from Southern Kentucky and Northern Tennessee. J Sediment Petrol 49:245–256

    Google Scholar 

  • Milliken KL, Laubach SE (2000) Brittle deformation in sandstone diagenesis as revealed by scanned cathodoluminescence imaging with application to characterization of fractured reservoirs. In: Pagel M, Barbin V, Blanc P, Ohnenstetter D (eds.) Cathodoluminescence in geosciences. Springer, Berlin, pp 225–243

    Google Scholar 

  • Mišik M (1995) Authigenic quartz crystals in the Mesozoic and Paleogene carbonate rocks of the Western Carpathians. Geologica Carphatica 46:227–239

    Google Scholar 

  • Molenaar N, deJong AFM (1987) Authigenic quartz and albite in Devonian limestones: origin and significance. Sedimentology 34:623–640

    Google Scholar 

  • Monecke T, Bombach G, Klemm W, Kempe U, Götze J, Wolf D (2000) Determination of trace elements in quartz standard UNS-SpS and in natural quartz by ICP-MS. Geostand Newslett 24(1):73–81

    Google Scholar 

  • Nachsel G (1969) Idiomorphe Quarze und Vertaubungen im Kaliflöz “Staßfurt” des Südharz-Kalireviers. Z Angew Geol 15:420–425

    Google Scholar 

  • Neuser RD, Bruhn F, Götze J, Habermann D, Richter DK (1995) Kathodolumineszenz: Methodik und Anwendung. Zentralblatt für Geologie und Paläontologie Teil I H 1/2:287–306

    Google Scholar 

  • Parnell J, Carey PF, Monson B (1996) Fluid inclusion constraints on temperatures of petroleum migration from authigenic quartz in bitumen veins. Chem Geol 129:217–226

    Google Scholar 

  • Richter DK (1971) Fazies- und Diagenesehinweise durch Einschlüsse in authigenen Quarzen. Neues Jahrbuch Geologie Paläonthologie, Monatshefte H 10:604–622

    Google Scholar 

  • Richter DK, Götte Th, Götze J, Neuser RD (2003) Progress in application of cathodoluminescence (CL) in sedimentary petrology. Miner Petrol 79:127–166

    Google Scholar 

  • Ruppert LF, Cecil CB, Stanton RW, Christian RP (1985) Authigenic quartz in the Upper Freeport coal bed, west-central Pennsylvania. J Sediment Res 55:334–339

    Google Scholar 

  • Schneider W (1986) Phytogene Verkieselungen in der miozänen Braunkohle und deren Aussagen für Stratigraphie, Fazies und Flözgenese. Zeitschrift geologische Wissenschaften 14:153–162

    Google Scholar 

  • Sedletskiy VI (1971) Some features of authigenic quartz formation in evaporate basins (in Russian). Geologika Geofizika 5:72–77

    Google Scholar 

  • Seyedolali A, Krinsley DH, Boggs S Jr, O’Hara PF, Dyavik H, Goles GG (1997) Provenance interpretation of quartz by scanning electron microscope-cathodoluminescence fabric analysis. Geology 25:787–790

    Google Scholar 

  • Siegel GH, Marrone MJ (1981) Photoluminescence in as-drawn and irradiated silica optical fibers: An assessment of the role of nonbridging oxygen defect centers. J Non-Cryst Solids 45:235–247

    Google Scholar 

  • Sippel RF (1968) Sandstone petrology, evidence from luminescence petrography. J Sediment Petrol 38:530–554

    Google Scholar 

  • Soong R, Blattner P (1986) Biterminal authigenic 18O-enriched quartz in a subbituminous coal seam, Charleston, New Zealand. N Z J Geol Geophys 29:141–145

    Google Scholar 

  • Spiro B, Rozenson I (1982) Formation and properties of authigenic minerals in bituminous calcareous shales, Ghareb Formation, Israel. Can Mineral 20:29–39

    Google Scholar 

  • Walderhaug O (1990) A fluid inclusion study of quartz-cemented sandstones from offshore mid-Norway—possible evidence for continued quartz cementation during oil emplacement. J Sediment Petrol 60:203–210

    Google Scholar 

  • Walderhaug O (1994) Temperature of quartz cementation in Jurassic sandstones from the Norwegian continental shelf—evidence from fluid inclusions. J Sediment Res A64:311–323

    Google Scholar 

  • Walker G, Burley S (1991) Luminescence petrography and spectroscopic studies of diagenetic minerals. In: Barker CE, Kopp OC (eds.) Luminescence microscopy and spectroscopy: Qualitative and quantitative applications. SEPM, Tulsa, pp 83–96

    Google Scholar 

  • Walther H, Götze J (1994) Zur Bildung von Quarziten und authigenen Quarzen in Braunkohlen. Eur J Mineral Beiheft 1(6):301

    Google Scholar 

  • Weil JA (1984) A review of electron spin spectroscopy and its application to the study of paramagnetic defects in crystalline quartz. Phys Chem Miner 10:149–165

    Google Scholar 

  • Wood SA (1990) The aqueous geochemistry of the rare-earth elements and yttrium. Chem Geol 88:99–125

    Google Scholar 

  • Wordan RH, Morad S (2000) Quartz cementation in oil field sandstones: a review of the key controversies. In: Worden RH, Morad S (eds.) Quartz cementation in sandstones. Blackwell Science, Oxford, pp 1–20

    Google Scholar 

  • Zajic JM (1969) Microbial biogeochemistry. Academic Press, New York

    Google Scholar 

  • Zinkernagel U (1978) Cathodoluminescence of quartz and its application to sandstone petrology. Contrib Sedimentol 8:1–69

    Google Scholar 

  • Zuffa GG (1985) Provenance of arenites. NATO ASI series C 148, Reidel Publ. Co., Boston, 393 p

    Google Scholar 

Download references

Acknowledgement

M. Fruth is gratefully acknowledged for providing samples from the Zechstein salt deposits. U. Kempe and L. Nasdala kindly helped during the analytical work. The preparation of the drawings was supported by St. Kubel. Constructive reviews of the manuscript by Kitty L. Milliken and J. Kelly significantly improved the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Götze .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Götze, J. (2012). Mineralogy, Geochemistry and Cathodoluminescence of Authigenic Quartz from Different Sedimentary Rocks. In: Götze, J., Möckel, R. (eds) Quartz: Deposits, Mineralogy and Analytics. Springer Geology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22161-3_13

Download citation

Publish with us

Policies and ethics