Skip to main content

Latent Tree Classifier

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6717))

Abstract

We propose a novel generative model for classification called latent tree classifier (LTC). An LTC represents each class-conditional distribution of attributes using a latent tree model, and uses Bayes rule to make prediction. Latent tree models can capture complex relationship among attributes. Therefore, LTC can approximate the true distribution behind data well and thus achieve good classification accuracy. We present an algorithm for learning LTC and empirically evaluate it on 37 UCI data sets. The results show that LTC compares favorably to the state-of-the-art. We also demonstrate that LTC can reveal underlying concepts and discover interesting subgroups within each class.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akaike, H.: A new look at the statistical model identification. IEEE T. Automat. Contr. 19(6), 716–723 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  2. Asuncion, A., Newman, D.J.: UCI machine learning repository (2007)

    Google Scholar 

  3. Chen, T., Zhang, N.L., Wang, Y.: Efficient model evaluation in the search-based approach to latent structure discovery. In: 4th European Workshop on Probabilistic Graphical Models, pp. 57–64 (2008)

    Google Scholar 

  4. Chickering, D.M., Heckerman, D.: Efficient approximations for the marginal likelihood of Bayesian networks with hidden variables. Mach. Learn. 29, 181–212 (1997)

    Article  MATH  Google Scholar 

  5. Chow, C.K., Liu, C.N.: Approximating discrete probability distributions with dependence trees. IEEE T. Inform. Theory 14(3), 462–467 (1968)

    Article  MATH  Google Scholar 

  6. Dempster, A.P., Laird, N.M., Rubin, D.R.: Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Stat. Soc. B Met. 39(1), 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

  7. Domingos, P., Pazzani, M.: On the optimality of the simple Bayesian classifier under zero-one loss. Mach. Learn. 29, 103–130 (1997)

    Article  MATH  Google Scholar 

  8. Duda, R.O., Hart, P.E.: Pattern Classification and Scene Analysis. Wiley, Chichester (1973)

    MATH  Google Scholar 

  9. Fayyad, U.M., Irani, K.B.: Multi-interval discretization of continuous-valued attributes for classification learning. In: 13th International Joint Conference on Artificial Intelligence, pp. 1022–1027 (1993)

    Google Scholar 

  10. Friedman, N., Geiger, D., Goldszmidt, M.: Bayesian network classifiers. Mach. Learn. 29(2-3), 131–163 (1997)

    Article  MATH  Google Scholar 

  11. John, G.H., Kohavi, R., Pfleger, K.: Irrelevant features and the subset selection problem. In: 11th International Conference on Machine Learning, pp. 121–129 (1994)

    Google Scholar 

  12. Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: 14th International Joint Conference on Artificial Intelligence, pp. 1137–1145 (1995)

    Google Scholar 

  13. Langseth, H., Nielsen, T.D.: Latent classification models. Mach. Learn. 59(3), 237–265 (2005)

    MATH  Google Scholar 

  14. Langseth, H., Nielsen, T.D.: Classification using hierarchical naive Bayes models. Mach. Learn. 63(2), 135–159 (2006)

    Article  MATH  Google Scholar 

  15. Langseth, H., Nielsen, T.D.: Latent classification models for binary data. Pattern Recogn. 42, 2724–2736 (2009)

    Article  MATH  Google Scholar 

  16. Monti, S., Cooper, G.F.: A Bayesian network classifier that combines a finite mixture model and a naive Bayes model. In: 11th Annual Conference on Uncertainty in Artificial Intelligence, pp. 447–456 (1995)

    Google Scholar 

  17. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San Francisco (1988)

    MATH  Google Scholar 

  18. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Francisco (1993)

    Google Scholar 

  19. Rubinstein, Y.D., Hastie, T.: Discriminative vs informative learning. In: 3rd International Conference on Knowledge Discovery and Data Mining, pp. 49–53 (1997)

    Google Scholar 

  20. Wang, Y.: Latent Tree Models for Multivariate Density Estimation: Algorithms and Applications. Ph.D. thesis, Hong Kong University of Science & Technology (2009)

    Google Scholar 

  21. Webb, G.I., Boughton, J.R., Wang, Z.: Not so naive Bayes: Aggregating one-dependence estimators. Mach. Learn. 58, 5–24 (2005)

    Article  MATH  Google Scholar 

  22. Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and techniques. Morgan Kaufmann, San Francisco (2005)

    MATH  Google Scholar 

  23. Zhang, N.L.: Hierarchical latent class models for cluster analysis. Journal of Mach. Learn. Research 5(6), 697–723 (2004)

    MathSciNet  MATH  Google Scholar 

  24. Zhang, N.L., Nielsen, T.D., Jensen, F.V.: Latent variable discovery in classification models. Artif. Intell. Med. 30(3), 283–299 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, Y., Zhang, N.L., Chen, T., Poon, L.K.M. (2011). Latent Tree Classifier. In: Liu, W. (eds) Symbolic and Quantitative Approaches to Reasoning with Uncertainty. ECSQARU 2011. Lecture Notes in Computer Science(), vol 6717. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22152-1_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22152-1_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22151-4

  • Online ISBN: 978-3-642-22152-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics