Characterisation of the Tensile Test

  • Magdalena GromadaEmail author
  • Gennady Mishuris
  • Andreas Öchsner
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)


In this chapter, the methods utilised to determine the mechanical material properties are presented. In addition, the static tensile test is characterised taking into account the material constants obtained from the engineering stress–strain curve. The plotting of the flow curve of materials is discussed in detail. In addition, the hypotheses mentioned in literature regarding the onset of neck creation and methods of determining the mechanical properties from the tensile test are presented.


Tensile test Flow curve Necking Material parameters 


  1. 1.
    M. Alves, N. Jones, Influence of hydrostatic stress on failure of axisymmetric notched specimens. J. Mech. Phys. Solids 47, 643–667 (1999)zbMATHCrossRefGoogle Scholar
  2. 2.
    V.G Bazhenov, A.I Kibec, P.V Laptev et al. Experimental and Theoretical Investigation of the Limiting State of Elasto-Plastic Specimen with Different Cross Section Under Tensile Test (in Russian). Problems of Mechanics (Fizmatlit, Moscow, 2003), pp. 115–122Google Scholar
  3. 3.
    P.W. Bridgman, Studies in Large Plastic Flow and Fracture with Special Emphasis on the Effects of Hydrostatic Pressure (Harvard University press, Cambridge, 1964)Google Scholar
  4. 4.
    E.E. Cabezas, D.J. Celentano, Experimental and numerical analysis of the tensile test using sheet specimens. Finite Elem. Anal. Des. 40, 555–575 (2004)CrossRefGoogle Scholar
  5. 5.
    J. Chakrabarty, Applied Plasticity (Springer, New York, 2000)zbMATHGoogle Scholar
  6. 6.
    W.H. Chen, Necking of a bar. Int. J. Solids Struct. 7, 685–717 (1971)zbMATHCrossRefGoogle Scholar
  7. 7.
    N.N. Davidenkov, N.I. Spiridonova, Mechanical methods of testing. Analysis of the state of stress in the neck of a tension test specimen. Proc. Am. Soc. Test Mater. 46, 1147–1158 (1947)Google Scholar
  8. 8.
    L. Dietrich, J. Miastkowski, W. Szczepiński, Limiting Capacity of the Construction Elements (in Polish) (PWN, Warsaw, 1970)Google Scholar
  9. 9.
    L.A. Dobrzański, R. Nowosielski, Methods of Metals and Alloys Testing. Mechanical and Physical Properties Testing (in Polish) (Publishers of Silesian University of Technology, Gliwice, 1986)Google Scholar
  10. 10.
    Z. Dylg, A. Jakubowicz, Z. Orłoś, Strength of materials (in Polish) (PWN, Warsaw, 1996)Google Scholar
  11. 11.
    Z. Gabryszewski, J. Gronostajski, Mechanics of Process of Plastic Forming (in Polish) (PWN, Warsaw, 1991)Google Scholar
  12. 12.
    W. Gaudig, K. Bothe, A.K. Bhaduri et al., Determination of the geometric profile and stress/strain state in the necked region during inelastic deformation at elevated temperatures using a non-contact measurement technique. Test Evaluat. 24, 161–167 (1996)CrossRefGoogle Scholar
  13. 13.
    M.W. Grabski, Structural Superplasticity of Metals (in Polish) (Silesian Publishers, Katowice, 1973)Google Scholar
  14. 14.
    K.S. Havner, On the onset of necking in the tensile test. Int. J. Plast. 20, 965–978 (2004)zbMATHCrossRefGoogle Scholar
  15. 15.
    R. Hill, The Mathematical Theory of Plasticity (Clarendon Press, Oxford, 1950)zbMATHGoogle Scholar
  16. 16.
    O. Hoffman, G. Sachs, Introduction to the Plasticity Theory (in Polish) (PWN, Warsaw, 1959)Google Scholar
  17. 17.
    J.W. Hutchinson, J.P. Miles, Bifurcation analysis of the onset of necking in an elastic/plastic cylinder under uniaxial tension. J. Mech. Phys. Solids 22, 61–71 (1974)zbMATHCrossRefGoogle Scholar
  18. 18.
    Z. Jasieński, Influence of the deformation irregularity on the relation of the specific stress as stage of deformation in neck of metal tensile specimen (in Polish). Arch. Metall. Mater. 10, 189–239 (1965)Google Scholar
  19. 19.
    M. Joun, J.G. Eom, M.C. Lee, A new method for acquiring true stress-strain curves over a large range of strains using a tensile test and finite element method. Mech. Mater. 40, 586–593 (2008)CrossRefGoogle Scholar
  20. 20.
    L.M. Kachanov, Foundations of the Theory of Plasticity (Mir Publishers, Moscow, 1974)Google Scholar
  21. 21.
    S. Katarzyński , S. Kocańda, M. Zakrzewski, Investigation of Mechanical Properties of Metals (in Polish) (WNT, Warsaw, 1967)Google Scholar
  22. 22.
    G. La Rosa, G. Mirone, A. Risitano, Postnecking elastoplastic characterisation: degree of approximation in the Bridgman method and properties of the flow-stress/true-stress ratio. Metall. Mater. Trans. 34, 615–624 (2003)CrossRefGoogle Scholar
  23. 23.
    Y. Ling, Uniaxial true stress-strain after necking. AMP J. Tech. 5, 37–48 (1996)Google Scholar
  24. 24.
    N.N. Malinin, J. Rżysko, Mechanics of Materials (in Polish) (PWN, Warsaw, 1981)Google Scholar
  25. 25.
    E.R. Marshall, M.C. Shaw, The determination of flow stress from a tensile specimen. Trans. Am. Soc. Metal 44, 705–725 (1952)Google Scholar
  26. 26.
    A. Needleman, A numerical study of necking in circular cylindrical bars. J. Mech. Phys. Solids 20, 111–127 (1972)zbMATHCrossRefGoogle Scholar
  27. 27.
    D.M. Norris, B. Moran Jr, J.K. Scudder et al., A computer simulation of the tension test. J. Mech. Phys. Solids 26, 1–19 (1978)CrossRefGoogle Scholar
  28. 28.
    A. Öchsner, Experimental and Numerical Investigation of the Elasto-Plastic Behaviour of Cellular Model Materials (in German) (VDI Verlag GmbH, Düsseldorf, 2003)Google Scholar
  29. 29.
    A. Öchsner, J. Gegner, W. Winter et al., Experimental and numerical investigations of ductile damage in aluminium alloys. Mater. Sci. Eng. A-Struct 318, 328–333 (2001)CrossRefGoogle Scholar
  30. 30.
    K. Przybyłowicz, Metal Science (in Polish) (WNT, Warsaw, 2003)Google Scholar
  31. 31.
    K. Przybyłowicz, J. Przybyłowicz, Review of Materials Science. Methods of Testing The Metal Materials (in Polish) (Publishers of Świętokrzyska University of Technology, Kielce, 2002)Google Scholar
  32. 32.
    L. Ramser, W. Winter, G. Kuhn, in Ductile Damage in Aluminium Alloys. Workshop on Advanced Computational Engineering Mechanics, Maribor, 2003Google Scholar
  33. 33.
    M. Saje, Necking of a cylindrical bar in tension. Int. J. Solids Struct. 15, 731–742 (1979)zbMATHCrossRefGoogle Scholar
  34. 34.
    E. Siebel, S. Schwaigerer, On the mechanics of the tensile test (in German). Arch. Eisenhuttenwes 19, 145–152 (1948)Google Scholar
  35. 35.
    M. Skorupa, Engineering and True Flow Curve (in Polish).
  36. 36.
    Standard ASTM E8/E8 M-09 Standard Test Methods for Tension Testing of Metallic MaterialsGoogle Scholar
  37. 37.
    Standard EN 10002 –1 Metallic materials – Tensile testing – Part 1: Method of test at ambient temperatureGoogle Scholar
  38. 38.
    Standard ISO 6892-1Metallic materials-Tensile testing-Part 1: Method of test at room temperatureGoogle Scholar
  39. 39.
    N.A. Shapashnikov, Mechanical Tests of Metals (in Russian) (Mashgiz, Moscow, 1954)Google Scholar
  40. 40.
    W. Szczepiński, Experimental Methods of Solid Mechanics (in Polish) (PWN, Warsaw, 1984)Google Scholar
  41. 41.
    P.F. Thomason, An analysis of necking in axi-symmetric tension specimens. Int. J. Mech. Sci. 11, 481–490 (1969)CrossRefGoogle Scholar
  42. 42.
    A. Valiente, On Bridgman’s stress solution for a tensile neck applied to axisymmetrical blunt notched tension bars. J. Appl. Mech. 68, 412–419 (2001)zbMATHCrossRefGoogle Scholar
  43. 43.
    A. Valiente, J. Lapena, Measurement of the yield and tensile strengths of neutron-irradiated and post-irradiation recovered vessel steels with notched specimens. Nucl. Eng. Des. 167, 11–22 (1996)CrossRefGoogle Scholar
  44. 44.
    K.S. Zhang, Z.H. Li, Numerical analysis of the stress-strain curve and fracture initiation for ductile material. Eng. Fract. Mech. 49, 235–241 (1994)CrossRefGoogle Scholar
  45. 45.
    K.S. Zhang, C.Q. Zheng, Analysis of large deformation and fracture of axisymmetric tensile specimens. Eng. Fract. Mech. 39, 851–857 (1991)CrossRefGoogle Scholar
  46. 46.
    A.M. Zhukov, On the problem of the neck appearance in the tensile test (in Russian). Collect Engineers 2, 4–51 (1949)Google Scholar

Copyright information

© Magdalena Gromada 2011

Authors and Affiliations

  • Magdalena Gromada
    • 1
    Email author
  • Gennady Mishuris
    • 2
  • Andreas Öchsner
    • 3
  1. 1.Ceramic Department CERELInstitute of Power EngineeringBoguchwalaPoland
  2. 2.Institute of Mathematics and PhysicsAberystwyth University, PenglaisCeredigionUK
  3. 3.Department of Applied Mechanics, Faculty of Mechanical EngineeringTechnical University of MalaysiaJohorMalaysia

Personalised recommendations