Skip to main content

A Hypersequent System for Gödel-Dummett Logic with Non-constant Domains

  • Conference paper
Automated Reasoning with Analytic Tableaux and Related Methods (TABLEAUX 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6793))

Abstract

Gödel-Dummett logic is an extension of first-order intuitionistic logic with the linearity axiom \((A \supset B) \lor (B \supset A)\), and the so-called “quantifier shift” axiom \(\forall x(A \lor B(x)) \supset A \lor \forall x B(x).\) Semantically, it can be characterised as a logic for linear Kripke frames with constant domains. Gödel-Dummett logic has a natural formalisation in hypersequent calculus. However, if one drops the quantifier shift axiom, which corresponds to the constant domain property, then the resulting logic has to date no known hypersequent formalisation. We consider an extension of hypersequent calculus in which eigenvariables in the hypersequents form an explicit part of the structures of the hypersequents. This extra structure allows one to formulate quantifier rules which are more refined. We give a formalisation of Gödel-Dummett logic without the assumption of constant domain in this extended hypersequent calculus. We prove cut elimination for this hypersequent system, and show that it is sound and complete with respect to its Hilbert axiomatic system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Avellone, A., Ferrari, M., Miglioli, P.: Duplication-free tableau calculi and related cut-free sequent calculi for the interpolable propositional intermediate logics. In: Logic Journal of the IGPL, vol. 7(4), pp. 447–480 (1999)

    Google Scholar 

  2. Avellone, A., Ferrari, M., Miglioli, P., Moscato, U.: A tableau calculus for Dummett predicate logic. In: Proc. of the Eleventh Brazilian Conference on Mathematical Logic 1996. Contemporary Mathematics, vol. 235, pp. 135–150. American Mathematical Society, Providence (1999)

    Google Scholar 

  3. Avron, A.: Hypersequents, logical consequence and intermediate logics for concurrency. Ann. Math. Artif. Intell. 4, 225–248 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  4. Baaz, M., Ciabattoni, A.: A schütte-tait style cut-elimination proof for first-order gödel logic. In: Egly, U., Fermüller, C. (eds.) TABLEAUX 2002. LNCS (LNAI), vol. 2381, pp. 24–37. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  5. Baaz, M., Ciabattoni, A., Fermüller, C.G.: Hypersequent calculi for Gödel logics - a survey. J. Log. Comput. 13(6), 835–861 (2003)

    Article  MATH  Google Scholar 

  6. Baaz, M., Iemhoff, R.: Gentzen calculi for the existence predicate. Studia Logica 82(1), 7–23 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brünnler, K.: Cut elimination inside a deep inference system for classical predicate logic. Studia Logica 82(1), 51–71 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brünnler, K.: How to universally close the existential rule. In: Fermüller, C.G., Voronkov, A. (eds.) LPAR-17. LNCS, vol. 6397, pp. 172–186. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  9. Ciabattoni, A.: A proof-theoretical investigation of global intuitionistic (fuzzy) logic. Arch. Math. Log. 44(4), 435–457 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Corsi, G.: A cut-free calculus for Dummett’s LC quantified. Zeitschr. f. math. Logik und Grundlagen d. Math. 35, 289–301 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  11. Corsi, G.: Completeness theorem for Dummett’s LC quantified and some of its extensions. Studia Logica 51(2), 317–336 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dummett, M.: A propositional calculus with denumerable matrix. J. Symbolic Logic 24(2), 97–106 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dyckhoff, R.: A deterministic terminating sequent calculus for Gödel-Dummett logic. Logic Journal of the IGPL 7(3), 319–326 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gödel, K.: On the intuitionistic propositional calculus. In: Feferman, S., Dawson Jr, S.W., Kleene, S.C., Moore, G.H., Solovay, R.M., van Heijenoort, J. (eds.) Collected Works, vol. 1. Oxford University Press, Oxford (1986)

    Google Scholar 

  15. Iemhoff, R.: A note on linear Kripke models. J. Log. Comput. 15(4), 489–506 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. McDowell, R., Miller, D.: Cut-elimination for a logic with definitions and induction. Theor. Comput. Sci. 232(1-2), 91–119 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. Miller, D.: A logic programming language with lambda-abstraction, function variables, and simple unification. J. Log. Comput. 1(4), 497–536 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  18. Poggiolesi, F.: The tree-hypersequent method for modal propositional logic. Trends in Logic: Towards Mathematical Philsophy, 9–30 (2009)

    Google Scholar 

  19. Scott, D.: Identity and existence in intuitionistic logic. In: Fourman, M., Mulvey, C., Scott, D. (eds.) Applications of Sheaves. Lecture Notes in Mathematics, vol. 753, pp. 660–696. Springer, Berlin (1979)

    Chapter  Google Scholar 

  20. Slaney, J.K.: Solution to a problem of Ono and Komori. Journal of Philosophical Logic 18, 103–111 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  21. Sonobe, O.: A Gentzen-type formulation of some intermediate propositional logics. J. Tsuda College 7, 7–14 (1975)

    MathSciNet  Google Scholar 

  22. Tiu, A.: A local system for intuitionistic logic. In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS (LNAI), vol. 4246, pp. 242–256. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  23. Troelstra, A., Schwichtenberg, H.: Basic Proof Theory. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  24. van Dalen, D.: Logic and Structure. Springer, Heidelberg (2004)

    Book  MATH  Google Scholar 

  25. Wansing, H.: Displaying Modal Logic. Kluwer Academic Publishers, Boston (1998)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tiu, A. (2011). A Hypersequent System for Gödel-Dummett Logic with Non-constant Domains. In: Brünnler, K., Metcalfe, G. (eds) Automated Reasoning with Analytic Tableaux and Related Methods. TABLEAUX 2011. Lecture Notes in Computer Science(), vol 6793. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22119-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22119-4_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22118-7

  • Online ISBN: 978-3-642-22119-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics