Skip to main content

Multi-subject Dictionary Learning to Segment an Atlas of Brain Spontaneous Activity

  • Conference paper
Information Processing in Medical Imaging (IPMI 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6801))

Abstract

Fluctuations in brain on-going activity can be used to reveal its intrinsic functional organization. To mine this information, we give a new hierarchical probabilistic model for brain activity patterns that does not require an experimental design to be specified. We estimate this model in the dictionary learning framework, learning simultaneously latent spatial maps and the corresponding brain activity time-series. Unlike previous dictionary learning frameworks, we introduce an explicit difference between subject-level spatial maps and their corresponding population-level maps, forming an atlas. We give a novel algorithm using convex optimization techniques to solve efficiently this problem with non-smooth penalties well-suited to image denoising. We show on simulated data that it can recover population-level maps as well as subject specificities. On resting-state fMRI data, we extract the first atlas of spontaneous brain activity and show how it defines a subject-specific functional parcellation of the brain in localized regions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Archambeau, C., Bach, F.: Sparse probabilistic projections. In: Adv. NIPS (2008)

    Google Scholar 

  2. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM Journal on Imaging Sciences 2(1), 183 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Beckmann, C.F., Smith, S.M.: Probabilistic independent component analysis for functional magnetic resonance imaging. Trans. Med. Im. 23, 137 (2004)

    Article  Google Scholar 

  4. Bell, A., Sejnowski, T.: An information-maximization approach to blind separation and blind deconvolution. Neur. Comp. 7, 1129 (1995)

    Article  Google Scholar 

  5. Biswal, B., Mennes, M., Zuo, X., Gohel, S., Kelly, C., Smith, S., Beckmann, C., Adelstein, J., Buckner, R., Colcombe, S., et al.: Toward discovery science of human brain function. Proc. Ntl. Acad. Sci. 107, 4734 (2010)

    Article  Google Scholar 

  6. Calhoun, V.D., Adali, T., Pearlson, G.D., Pekar, J.J.: A method for making group inferences from fMRI data using independent component analysis. Hum. Brain Mapp. 14, 140 (2001)

    Article  Google Scholar 

  7. Chen, S., Donoho, D., Saunders, M.: Atomic decomposition by basis pursuit. SIAM Review 43, 129 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Combettes, P., Pesquet, J.: A proximal decomposition method for solving convex variational inverse problems. Inverse Problems 24, 065014 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Damoiseaux, J.S., Rombouts, S.A.R.B., Barkhof, F., Scheltens, P., Stam, C.J., Smith, S.M., Beckmann, C.F.: Consistent resting-state networks across healthy subjects. Proc. Natl. Acad. Sci. 103, 13848 (2006)

    Article  Google Scholar 

  10. Daubechies, I., Roussos, E., Takerkart, S., Benharrosh, M., Golden, C., D’Ardenne, K., Richter, W., Cohen, J.D., Haxby, J.: Independent component analysis for brain fMRI does not select for independence. Proc. Natl. Acad. Sci. 106, 10415 (2009)

    Article  Google Scholar 

  11. Donoho, D.: De-noising by soft-thresholding. Trans. Inf. Theory 41, 613 (1995), http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=382009

    Article  MathSciNet  MATH  Google Scholar 

  12. Golland, P., Golland, Y., Malach, R.: Detection of spatial activation patterns as unsupervised segmentation of fMRI data. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part I. LNCS, vol. 4791, pp. 110–118. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  13. Hebiri, M., Van De Geer, S.A.: The Smooth-Lasso and other ℓ1 + ℓ2-penalized methods. ArXiv:1003.4885 (2010), http://arxiv.org/abs/1003.4885v1

  14. Hyvärinen, A., Oja, E.: Independent component analysis: algorithms and applications. Neural Networks 13, 411 (2000)

    Article  Google Scholar 

  15. Kettenring, J.R.: Canonical analysis of several sets of variables. Biometrika 58, 433 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kreutz-Delgado, K., Murray, J., Rao, B., Engan, K., Lee, T., Sejnowski, T.: Dictionary learning algorithms for sparse representation. Neur. Comp. 15, 349 (2003)

    Article  MATH  Google Scholar 

  17. Mairal, J., Bach, F., Ponce, J., Sapiro, G.: Online learning for matrix factorization and sparse coding. Journal of Machine Learning Research 11, 19 (2010)

    MathSciNet  MATH  Google Scholar 

  18. Mairal, J., Jenatton, R., Obozinski, G., Bach, F.: Network flow algorithms for structured sparsity. In: Adv. NIPS (2010)

    Google Scholar 

  19. McHugh, J.: Algorithmic Graph Theory. Prentice-Hall, Englewood Cliffs (1990)

    MATH  Google Scholar 

  20. Minka, T.: Automatic choice of dimensionality for PCA. In: Adv. NIPS, p. 598 (2001)

    Google Scholar 

  21. Sigg, C., Buhmann, J.: Expectation-maximization for sparse and non-negative PCA. In: Proc. ICML (2008)

    Google Scholar 

  22. Smith, S., Fox, P., Miller, K., Glahn, D., Fox, P., Mackay, C., Filippini, N., Watkins, K., Toro, R., Laird, A., et al.: Correspondence of the brain’s functional architecture during activation and rest. Proc. Natl. Acad. Sci. 106, 13040 (2009)

    Article  Google Scholar 

  23. Tipping, M., Bishop, C.: Probabilistic principal component analysis. Journal of the Royal Statistical Society. Series B, Statistical Methodology, 611 (1999)

    Google Scholar 

  24. Varoquaux, G., Baronnet, F., Kleinschmidt, A., Fillard, P., Thirion, B.: Detection of brain functional-connectivity difference in post-stroke patients using group-level covariance modeling. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010. LNCS, vol. 6361, pp. 200–208. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  25. Varoquaux, G., Keller, M., Poline, J., Ciuciu, P., Thirion, B.: ICA-based sparse features recovery from fMRI datasets. In: ISBI, p. 1177 (2010)

    Google Scholar 

  26. Wainwright, M.: Sharp thresholds for high-dimensional and noisy sparsity recovery using ℓ1-constrained quadratic programming. Trans. Inf. Theory 55, 2183 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Varoquaux, G., Gramfort, A., Pedregosa, F., Michel, V., Thirion, B. (2011). Multi-subject Dictionary Learning to Segment an Atlas of Brain Spontaneous Activity. In: Székely, G., Hahn, H.K. (eds) Information Processing in Medical Imaging. IPMI 2011. Lecture Notes in Computer Science, vol 6801. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22092-0_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22092-0_46

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22091-3

  • Online ISBN: 978-3-642-22092-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics